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Background

The HydEF project

Motivating example

HydEF project
(http://www.bgs.ac.uk/changingwatercycle/hydef.html) looking
at hydro(geo)logical impacts of climate change in UK

Detailed hydro(geo)logical models require high-resolution weather inputs,
consistent with changing large-scale synoptic conditions as obtained e.g.
from reanalysis products or GCMs

E.g. variables needed by JULES:

Rainfall rate Air pressure Snowfall rate Air temperature

Wind speed Specific humidity
Downward
short-wave
radiation

Downward
long-wave
radiation
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Background

Case study: the Thames

Case study: the Thames

Largest catchment in UK
(∼ 10000km2)

Modellers wanted hourly
sequences, 8 variables,
1km2 resolution
throughout catchment

●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ●

●

● Stations used for calibration Kennet grid nodes

Negotiated settlement: daily sequences, 5×5km2 resolution, Kennet
subcatchment (186 grid nodes)

Data on (most) variables nominally available from 157 stations, 1970
onwards
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Background

Case study: the Thames

Data availability (I)

Hourly data obtained from British Atmospheric Data Centre (BADC),
MIDAS Met Office dataset

Available variables: rainfall, snow, air pressure, air temperature, wind
speed, downward SW radiation
Missing variables: specific humidity and downward LW radiation

Can be derived from other variables using standard procedures from
literature

BUT . . .
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Background

Case study: the Thames

Data availability (II)

Numbers of stations with data (out of 157)

Rainfall Pressure Temperature Wind speed SWR

71 52 140 135 22

Many stations have short /
incomplete/ patchy records
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Background

Requirements

Motivating example: summary of requirements

Need to generate daily time series for . . .

Several variables simultaneously, with different distributions and
preserving inter-variable relationships . . .

at many locations simultaneously,
preserving inter-site relationships . . .

. . . including locations for which no
observations are available . . .

. . . and substantial amounts of
missing data at locations where
observations are available . . .

including a realistic climate change
signal.
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Background

Requirements

Structure of session

Part 1
Weather generators: what and why?

Weather generators vs RCMs

‘Classical’ generators

Other types of weather generator

Incorporating climate change information

Part 2
Issues in multisite generation

Classes of multisite generator

Data requirements

Software packages available, including Rglimclim

The Thames revisited
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Part 1: Introduction to weather generators



Weather generators: what and why? The ‘classical’ generator Other weather generator types Incorporating climate change Summary of Part 1

Definition

What is a weather generator?

IPCC summary
(www.ipcc-data.org/guidelines/pages/weather_generators.html)

A stochastic weather generator (WG) produces synthetic time se-
ries of weather data of unlimited length for a location based on the
statistical characteristics of observed weather at that location.

(remainder of IPCC summary strictly correct but potentially misleading — and
no mention of multi-site generation)

Additional requirement here: ability to capture climate change signal
using information from GCMs

NB tacit assumption that GCMs do not provide useful information at
resolution required by users (classic example: Abourgila 1992)
‘Perfect Prognosis’ approach to downscaling: GCM outputs taken as
correct (possibly after processing)
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Weather generators: what and why? The ‘classical’ generator Other weather generator types Incorporating climate change Summary of Part 1

Rationale

Why time series?

Interest in assessing response of complex systems to climate change

System response depends on how weather effects are aggregated:

UK flooding, Boscastle, August 2004: localised
intense rainfall in one day (Met Office, 2005)
UK flooding, winter 2000–2001: two-month
rainfall totals exceeding 200-year return period
(Finch et al., 2004)
European heatwave, 2003: excess deaths
associated with extended periods of extreme
heat without night-time cooling
(http://en.wikipedia.org/wiki/2003_
European_heat_wave)
Crop growth sensitive to quantity and timing of
precipitation (Kniveton et al., 2009)
etc. etc.

Boscastle, August 16th 2003
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Weather generators: what and why? The ‘classical’ generator Other weather generator types Incorporating climate change Summary of Part 1

Rationale

Generic requirements

Aim to reproduce some subset of time series features (“aspects” in
VALUE vocabulary)

Subset depends on context

Examples:

Marginal aspects : mean, variance, frequency of threshold
exceedances, return levels, . . .

Temporal aspects : trends, seasonality, autocorrelation, spell lengths,
. . .

Spatial aspects : systematic regional variation, residual inter-site
dependence, simultaneous threshold exceedances, . . .

Inter-variable relationships : correlations, frequency of joint events, . . .
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Weather generators: what and why? The ‘classical’ generator Other weather generator types Incorporating climate change Summary of Part 1

WGs vs RCMs

Weather generators versus RCMs

WGs

Empirically based

Stochastic in nature

Cheap to simulate

Require calibration (fitting) on
case-by-case basis

Can choose method and tune to
meet application requirements

Rely on empirical relationships
persisting into future

RCMs

Physically based

Deterministic in nature

Expensive to simulate

No user calibration required

Limited options for
application-specific tuning

Rely on laws of physics
persisting into future
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Weather generators: what and why? The ‘classical’ generator Other weather generator types Incorporating climate change Summary of Part 1

WGEN

The ‘classical’ weather generator

First ‘weather generator’: WGEN based on Richardson (1981) for daily
weather sequences

Built on earlier models for daily precipitation going back to Gabriel and
Neumann (1962)

Model precipitation first, then other variables conditional on precipitation
— because precipitation has challenging statistical properties

Markov chain for precipitation occurrence, gamma distribution for
intensity, separate parameters for each month of the year

(Some) other variables conditioned on precipitation status e.g. separate
distributions for wet and dry days, cosine functions fitted to parameters for
seasonality
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Weather generators: what and why? The ‘classical’ generator Other weather generator types Incorporating climate change Summary of Part 1

Markov chains

Markov models for precipitation

The basic Markov precipitation model

Let Yt = 1 if day t is ‘wet’, 0 otherwise

Markov assumption:
P(Yt = y |Yt−1,Yt−2, . . .) = P(Yt = y |Yt−1) for y = 0,1

Leads to 2-state Markov chain for precipitation occurrence

Characterised by transition probabilities:
π11 = P(Yt = 1|Yt−1 = 1), π01 = P(Yt = 1|Yt−1 = 0)

Wet-day intensities assumed independent and to follow some
distribution (exponential, gamma, . . .)
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Weather generators: what and why? The ‘classical’ generator Other weather generator types Incorporating climate change Summary of Part 1

Markov chains

Properties of Markov chains

Temporal dependence characterised via transition probabilities:
If π11 ' 1 then one wet day will very likely follow another
If π01 ' 0 then one dry day will very likely follow another
etc.

2-state Markov chain has equilibrium distribution: long-run proportion of
wet days is

P(Yt = 1) =
π01

1 + π01−π11
.

So transition probabilities also characterise marginal aspects of
precipitation occurrence

Higher-order chains give more flexibility e.g. specifying
P(Yt = 1|Yt−1 = y1,Yt−2 = y2).

See Exercise 1.
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Weather generators: what and why? The ‘classical’ generator Other weather generator types Incorporating climate change Summary of Part 1

Deficiencies

Deficiencies of basic WG

From IPCC guidelines:

One criticism of the Richardson-type WG is its failure to describe ad-
equately the length of dry and wet series (i.e. persistent events such as
drought and prolonged rainfall). These can be very important in some ap-
plications (e.g. agricultural impacts).

Other common problems:

Tendency to underestimate variability of seasonal means / totals
(“overdispersion” — see, e.g., Katz and Parlange 1998).

Underestimation of high return levels e.g. 100-year daily maxima
(independent exponential / gamma intensity distributions do not yield
‘heavy tailed’ extreme distributions observed in daily rainfall data e.g.
Katz et al. 2002)
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Weather generators: what and why? The ‘classical’ generator Other weather generator types Incorporating climate change Summary of Part 1

Deficiencies

Approaches to remedying deficiencies in basic WG structure

Many suggestions in literature:

Higher-order Markov chains to improve wet and dry spell performance
Heavy-tailed intensity distributions to improve extremal behaviour
Introduce latent classes with separate parameter sets, to increase
variability in seasonal means
Nonparametric modelling to avoid specific distributional assumptions
Etc. etc.

An elephant in the room?

What about correlation
between successive days’
precipitation intensities?
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Weather generators: what and why? The ‘classical’ generator Other weather generator types Incorporating climate change Summary of Part 1

Summary of alternative approaches

Other approaches to weather generation

Approaches based on spell lengths

Resampling methods

Generalised linear models

Subdaily weather generators

See also:
VALUE inventory and review of statistical downscaling
methods — summary at http://convection.zmaw.de/
fileadmin/user_upload/convection/Convection/WG_
Presentations/2014.01.29-30/SDS_COST_Inventory_
AFischer.pdf
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Weather generators: what and why? The ‘classical’ generator Other weather generator types Incorporating climate change Summary of Part 1

Generators based on spell lengths

Generators based on spell lengths

Idea: resolve problems with spell-length distributions by placing these at
heart of generator:

Start by generating wet and dry spell lengths
Then proceed similarly to ‘classic’ generator

Approach common in agricultural applications where spell lengths are
important
LARS-WG is best-known example:

Uses ‘semi-empirical’ spell length distributions fitted separately for each
month

See Semenov et al. (1998) for summary and comparison with WGEN
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Weather generators: what and why? The ‘classical’ generator Other weather generator types Incorporating climate change Summary of Part 1

Resampling methods

Resampling methods

Idea: for each day of simulation, choose values at random from
observations on days ‘similar to’ current day
‘Similarity’ could be, e.g.:

All values on same day of year (seasonality)
Values from days with similar previous days’ weather (autocorrelation)
Values from days with similar large-scale synoptic conditions

Nonparametric approach makes minimal assumptions

Inter-variable dependencies automatically preserved

Cannot generate values outside range of those previously observed

Cannot consider too many factors in determining similarity (‘curse of
dimensionality’)

More details: Buishand and Brandsma (2001)
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Generalised linear models

Generalised linear models (GLMs)

Idea: embed ‘classical’ generator within wider class of models
Grunwald and Jones (2000) showed that Markov-based models are
special cases of Generalised Linear Models (GLMs)

GLMs first applied to daily rainfall by Coe and Stern (1982).
Cornerstone of modern statistical practice in all application areas

Richard Chandler (r.chandler@ucl.ac.uk) Stochastic weather generators Third VALUE training workshop 21 / 85

Weather generators: what and why? The ‘classical’ generator Other weather generator types Incorporating climate change Summary of Part 1

Generalised linear models

GLM for precipitation occurrence

Common to use logistic regression model:

ln

(
pt

1−pt

)
= x′tβ = η

occ
t , say ⇒ pt = [1 + exp(−ηt)]−1

where:
pt is probability of precipitation on day t
xt is vector of covariates (predictors)
β is coefficient vector

E.g. set xt = (1 Yt−1)′, β = (β0 β1)′, then pt =
[
1 + e−(β0+β1Yt−1)

]−1

When Yt−1 = 0, pt =
[
1 + e−β0

]−1
— this is π01 in Markov formulation

When Yt−1 = 1, pt =
[
1 + e−(β0+β1)

]−1
this is π11
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Weather generators: what and why? The ‘classical’ generator Other weather generator types Incorporating climate change Summary of Part 1

Generalised linear models

GLMs for other variables

Generic formulation of arbitrary (now generic) variable Yt

{Yt} considered drawn from common family of distributions (normal,
gamma, Poisson, Bernoulli, . . .)
Conditional on covariate vector xt , expected value of Yt is µt = E(Yt |xt )
µt related to linear predictor ηt = xt β via relationship g(µt ) = ηt for link
function g(·).

Extends linear regression model (normal distributions, g(µt) = µt ).
E.g. use gamma GLM with log link for precipitation intensity

Can model temporal dependence in intensity by including Yt−1 in xt —
maybe resolve overdispersion problem?

Unified approach for all variables — differences only in choice of
distribution

Coefficients estimated using maximum likelihood

Assumptions can be checked
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Weather generators: what and why? The ‘classical’ generator Other weather generator types Incorporating climate change Summary of Part 1

Generalised linear models

Interactions

With two covariates x1t ,x2, suppose ηt = β0 + β1x1t + β2x2t .

Suppose also that x2 modulates effect of x1: β1 = γ0 + γ1x2t . Then

ηt = β0 + (γ0 + γ1x2t)x1t + β2x2t

= β0 + γ0x1t + β2x2t + γ1x1tx2t .

Easily handled in usual framework: just define extra covariate x1tx2t .

Higher-order interactions can be handled similarly.

Consequence for weather generators

Seasonal variation in parameters is just an
interaction between seasonal and other covariates

Eliminates need for separate fitting to different
months / seasons
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Subdaily generators

Subdaily generators

Subdaily precipitation structure too complex for many of previous model
types

Subdaily models attempt to represent underlying mechanisms in more or
less simplified form
Two broad classes of subdaily precipitation generator:

Poisson cluster models — represent precipitation as superposition of
‘cells’ clustered within ‘storms’
Multiscaling models — exploit systematic variation of precipitation
summary statistics with temporal resolution

Up-to-date review in Chandler et al. (2014).

Limited work on subdaily generation for other variables

Subdaily generation not considered further here.
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Weather generators: what and why? The ‘classical’ generator Other weather generator types Incorporating climate change Summary of Part 1

Background

Incorporating climate change information

Weather generation in climate change context requires ability to connect
WG parameters / outputs with large-scale atmospheric structure
Various heuristic schemes e.g. additive / multiplicative change factors
based directly on GCM changes in variables of interest

Inappropriate for (e.g.) precipitation because change factors do not affect
wet / dry properties
Some more considered applications apply change factors to relevant model
parameters e.g. (Kilsby et al., 2007) — approach used in UKCP09 national
climate projections for UK
(http://ukclimateprojections.metoffice.gov.uk/).

More formally: integrate indices of large-scale structure formally into
model specification
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Predictor selection

Predictor selection

Requirements for indices of large-scale structure

Indices must have genuine relationship with local
variable(s) of interest

Relationship must be robust to changes in climate
Relationship must capture climate change signal

Indices must be well simulated by GCMs

See also IPCC guidelines at
www.ipcc-data.org/guidelines/dgm_no2_v1_09_2004.pdf (but
NB review of weather generators now out-of-date)
Requirements unverifiable(!) Pragmatic response:

Focus on variables and scales at which GCMs might reflect reality; and
acknowledge difficulty (Smith, 2002).
Try to incorporate known mechanisms into WG structure
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Synoptic indices

Synoptic indices

One possibility: construct indices of large-scale structure and incorporate
directly into weather generator model
Examples of indices:

Teleconnection indices: ENSO, NAO, . . .
Means of relevant fields e.g. MSLP, temperature, . . . over relevant area
Principal modes of relevant fields (e.g. EOFs) — but NB can be hard to
align modes from GCMs with those from observations

Typically need measures of moisture availability where precipitation is
concerned (Charles et al., 1999b)

Relevant indices may vary with region and season
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Synoptic indices

Incorporating synoptic indices into WG models

‘Classical’ WG models: difficult, mostly done by parameter perturbation
or weather classification (next slide)

Resampling methods: incorporate indices in metric used to select
candidate days for resampling
GLMs: incorporate directly as additional covariates

Interactions account for regional / seasonal variation in effect size
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Weather generators: what and why? The ‘classical’ generator Other weather generator types Incorporating climate change Summary of Part 1

Weather classification

Weather classification

Alternative to direct use of indices: classify days into ‘weather types’
based on circulation patterns

Examples: Jenkinson-Collinson, Großwetterlagen, etc.
Classification may also depend on predictand(s) (see practical session)

Incorporating weather types into WGs

Most WG models: fit separate parameters for each type

Resampling methods: resample from days with same type
GLMs: define ‘dummy’ 0 / 1 covariates to select type for each day

With G types (groups), need G−1 dummy covariates
Coefficients are deviations from remaining ‘reference type’

NB can be parameter-intensive if many types are used

Useful resource for European applications: COST733 intercomparison
project (http://cost733.met.no/)
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Summary of Part 1

Weather generators are stochastic models to produce (usually daily) time
series of one or more variables

Precipitation is fundamental due to modelling challenges

‘Classical’ structure based on Markov chain for precipitation occurrence;
performs poorly with respect to spell lengths, interannual variability and
extremes

Other suggestions designed to address deficiencies directly or to make
minimal assumptions about distributions etc.

GLMs encompass ‘classical’ structures within flexible framework that
permits many extensions to basic model structure (including ease of
incorporating large-scale information)

In climate change work, predictor selection requires care
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Key issues Model classes Data Software The Thames revisited Summary of Part 2

The need for multisite generators

Multisite generation

Methods in Part 1 primarily developed for series at single site
Some applications need simultaneous time series at multiple sites

E.g. hydrological studies of large catchments
Development of national energy infrastructure to respond to local variation
in energy demand / risk of damage to generators etc.
Strategies for health provision or wildfire management in heatwaves

In all examples above, spatial organisation of weather is important:
Do all sites experience similar weather simultaneously?
Or are only one or two sites affected at any one time?

May also need to generate at ungauged sites (cf Thames example)

Additional benefit of multisite analysis:

Pooling data across sites can increase modelling
precision (“space-for-time” / “borrowing strength”)
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Regional variation and residual dependence

‘Spatial dependence’: a key distinction

Systematic regional variation:

From UK Met Office

Residual inter-site dependence:

From www.weatheronline.co.uk

1 Systematic regional (spatial) variation ≡ ‘climatology’
2 Residual inter-site dependence ≡ ‘spatial organisation of anomalies’
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Regional variation and residual dependence

Implications of distinction

A truly multisite weather generator must address both aspects of spatial
structure

Relatively few truly multisite WGs widely available . . .

. . . and very few multisite, multivariate WGs
Aim here: review most promising options that are truly multisite

Deliberately exclude those that do not address residual inter-site
dependence

Focus inevitably on precipitation since few multisite WGs available for
other variables
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Multisite extensions of classical generator

Multisite extensions of classical generators

Most multisite extensions of classical generator follow Wilks (1998)
Fit standard generator at each location separately

Systematic variation captured by different parameters at each site (so
cannot use directly at ungauged locations)

Residual inter-site dependence captured by using correlated random
numbers in simulations

Exploit ease of generating correlated Gaussian random numbers
Occurrence: use correlations for latent Gaussian variables (next slide)
Intensity: work with intensities transformed to Gaussianity, then
back-transform

Correlations estimated by matching to observed correlations
Occurrence: ‘trial and error’ simulation-based scheme — unsuitable for
large numbers of sites
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Latent Gaussian variables

Latent Gaussian variables

Convenient way to generate correlated vector Y = (Y1, . . . ,YS)′ of binary (0/1)
variables:

Generate vector Z = (Z1, . . . ,ZS)′ of correlated Gaussian variables, with
Zs ∼ N(0,1) for s = 1, . . . ,S.

For each s, set Ys = 1 if Zs > λs, Ys = 0 otherwise

Choose thresholds λ1, . . . ,λS to obtain desired probabilities of
occurrence at each site
Choose correlations among (Zs) to obtain desired dependence in (Ys)

‘Standard’ approach in WG literature: match to observed correlations
Easier approach: match to joint occurrence probabilities (enables direct
numerical calibration, see Ambrosino et al. 2014)

Difficulty: estimated correlations may not be mutually compatible
Solution: use spatial correlation model fitted to estimates
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Other extensions of single-site models

Other extensions of single-site models

Resampling methods: conceptually identical to single-site case
Automatically reproduces distributions, dependence between sites &
variables etc.
Cannot resample at ungauged locations

GLMs: add extra covariates to represent systematic regional variation,
then use e.g. correlation models for residual dependence (Chandler and
Wheater, 2002; Yang et al., 2005b).

Extra covariates: altitude, functions of geographical coordinates etc.
Interactions allow regional variation of other model parameters
Regional covariates and correlation functions allow simulation at ungauged
locations
Models fitted under ‘working’ assumption of independence, with
subsequent adjustments to uncertainty assessments (see practical
session)
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Other extensions of single-site models

Additional multisite class: transformed Gaussian variables

Idea: let Xt be vector of correlated Gaussian variables on day t , and
generate vector Yt of precipitation values as

Yst =

{
X β

st if Xst > 0
0 otherwise.

Similar to latent Gaussian approach for occurrence, but generates
occurrence and intensity simultaneously

Parameter β controls shape of intensity distribution

Mean vector and covariance matrix of Xt simultaneously control
occurrence probabilities, mean intensity and inter-site dependence.

Key reference: Stehlı́k and Bárdossy (2002).

Caveat: in reality, different processes control occurrence and intensity
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Other extensions of single-site models

Hidden Markov Models

Idea (Charles et al., 1999a):
extension of weather typing

Sequence of weather states
S1,S2, . . . associated both with
typical patterns of precipitation
occurrence Y1,Y2, . . . and
large-scale circulation patterns
X1,X2, . . .

S1 S2 S3 S4

Y1 Y2 Y3 Y4

X1 X2 X3 X4

State sequence is Markov chain with transition probabilities determined
by large-scale circulation
Precipitation usually assumed conditionally independent given state

Assumption probably reasonable for large study areas with few sites
Assumption relaxed by Ailliot et al. (2009).
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Other extensions of single-site models

Example of HMM states and precip patterns

(Joint work with Bryson Bates and Steve Charles)
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Other extensions of single-site models

Small study areas

Small study areas often have
very high inter-site dependence

Occurrence models based on
latent Gaussian correlations can
struggle to capture this . . .

. . . but correlation is not the only
measure of dependence

From Yang et al. (2005b)

Alternative (Yang et al., 2005b): model distribution of # of wet sites
Beta-binomial is flexible and interpretable family of distributions for this
purpose
Allows tendency for most sites to be either wet or dry
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Missing data

Data requirements for multisite weather generators

Weather generators require calibration to observed data . . .

. . . but some or all observations are often missing:
Individual observations / blocks missing from otherwise complete record
Different record lengths (short records have missing ends)
Absence of recording stations at required locations (e.g. subcatchment
centres, nodes of regular grid)

Possible solutions:
Work just with data available if WG calibration scheme allows it
Interpolation: estimate missing values (e.g. kriging, inverse distance
weighting, splines etc.)

Strong recommendation:

NEVER, on any account, work with interpolated
precipitation data!!!
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Dangers of interpolation

Interpolation: what’s the problem?

“Interpolation” here means using ‘best’ estimates of missing values

Interpolated values are smoothed⇒ variability reduced (affects, e.g.,
extremes)

Interpolation introduces artificial inhomogeneities e.g. due to different
distances from nearest neighbouring gauges . . .

and it gives false impression of reduced uncertainty
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Dangers of interpolation

Example: simulation experiment

Simulate 30-year sequences at
12 locations (blue triangles):

Multi-site GLM used: identical
structure at all sites
Sequences ‘typical’ of SE
England
Spatial scale: ∼ 75% of days
have sites all wet or all dry,
wet-day inter-site correlations
∼ 0.6–0.8.

1 2

3 4

5

6

7

8

9

10

11

12

1 2 3 4

5 6 7 8

9 10 11 12

Gauge Grid node

Map of simulation region

Use kriging to create gridded daily dataset from simulations

Regular grid: 12 nodes (red squares)

Compare annual maxima / return levels for original & gridded data
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Dangers of interpolation

Results of simulation experiment

Distributions of annual maxima, and pooled return level estimates
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Simulation experiment: distributions of annual maxima in 30−year period

Sites
Grid nodes

Return Estimate (mm)
period Original Gridded
10 yr 44.0 38.0
50 yr 57.8 49.4
100 yr 63.9 54.4

Actual return periods for gridded
estimates: 5, 19 and 34 years

Maxima for gridded data are smaller and less variable

Gridding reduces return level estimates by ∼ 15%
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Implications for calibration

Handling missing data

When fitting WG models to sites with missing data, ideally choose
approach that does not require complete records
Multisite model classes for which this is straightforward:

Multisite extensions of ‘classical’ models (calibration done site-by-site)
GLMs
Models based on transformed Gaussian fields

For simulation at ungauged locations: better to interpolate WG
parameters than data values

GLM does this automatically via interactions with ‘spatial’ covariates
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Freely-available packages

Software packages for weather generation

Name & URL Notes

LARS-WG
(www.rothamsted.ac.uk/mas-models/larswg.php)

Single-site, multivariate. Based on
wet and dry spell length distributions.

SDSM
(co-public.lboro.ac.uk/cocwd/SDSM/

Single-site, multivariate. Based on
‘classical’ WG formulation.

WeaGETS
(www.mathworks.co.uk/matlabcentral/fileexchange/
29136-stochastic-weather-generator--weagets-)

Single-site, multivariate, based on
‘classical’ WG formulation.

MulGETS
(www.mathworks.co.uk/matlabcentral/fileexchange/
47537-multi-site-stochstic-weather-generator--mulgets-)

Multi-site, multivariate. Extension of
WeaGETS, based on Wilks (1998) ap-
proach.

UKCP09
(ukclimateprojections.metoffice.gov.uk/22540)

Single-site, multivariate, ‘classical’
WG formulation but with Poisson clus-
ter model for precipitation component.

Rglimclim
(www.homepages.ucl.ac.uk/˜ucakarc/work/glimclim.
html

) Multi-site, multivariate, based on
GLMs.

NHMM
(iamrandom.com/nhmm-package)

Multi-site, univariate, based on hidden
Markov models.
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Rglimclim

Rglimclim

Software package for developing multivariate, multisite daily weather
generators using GLMs

Runs under R (http://www.R-project.org) on all platforms

Based on earlier Glimclim package — Fortran 77(!), multisite but
univariate weather generator

Adds graphical facilities and diagnostics as well as multivariate modelling
/ simulation capability

Flexible model structures allow development based on physical
understanding rather than statistical convenience

Allows imputation of missing values (see later)
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Rglimclim

Modelling capability (I)

Distributions currently available:
Normal (not very useful)
Heteroscedastic normal (suitable for, e.g., temperature)
Gamma (suitable for, e.g., wind speed, precipitation intensity)
Bernoulli (suitable for, e.g., precipitation occurrence)

Covariate classes:
‘Site effects’: flexible representation of systematic regional variation
(‘climatology’)
Seasonality: various options available
Autocorrelation: functions of lagged values
Inter-variable dependence: functions of simultaneous and lagged values of
other variables
‘External’ influences e.g. indices of large-scale climate
Interactions: allow effects of one variable to be modulated by others
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Rglimclim

Modelling capability (II)

Several structures available for representing residual inter-site
dependence to ensure spatial coherence

Most based on correlation structures for standardised / Anscombe
residuals (defined so as to have “almost Gaussian” distribution)
Additional options available for Bernoulli distributions — needed for
realistic generation of spatial rainfall occurrence:

Thresholding of latent Gaussian field with spatial correlation structure —
suitable for large regions
Beta-binomial representation for distribution of ‘wet area’ — suitable for
small catchments where inter-site dependence is uniformly high
Model based on simple binary weather state process (original Glimclim
model — other options preferable)
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Rglimclim

Model fitting and comparison

Models fitted using maximum likelihood under (incorrect) assumption of
independence between sites

Standard IWLS fitting algorithm, augmented to allow estimation of
parameters in nonlinear covariate transformations
Computationally fast⇒ feasible to fit & compare many different models on
large datasets
Lose some estimation efficiency compared with fully-specified spatial
model — unimportant for large datasets
Usual standard errors adjusted for inter-site dependence (‘sandwich
covariance estimation’)

Model comparison using likelihood ratio tests adjusted for inter-site
dependence (methodology of Chandler & Bate, Biometrika, 2007)

Extensive summary and diagnostic information to identify lack-of-fit and
guide model-building process
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Rglimclim

Simulation and imputation

Simulated sequences can be either unconstrained (conventional WG) or
conditioned on all available observations:

Allows for multiple imputation of missing observations⇒ quantifies
uncertainty in historical properties
Can also be used to ‘interpolate’ to regular grid — alternative to gridded
datasets

Summary and plot methods check ability to reproduce wide variety of
properties

Examples in practical sessions
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Rglimclim model for Thames

Example: the Thames again

Variables modelled and distributions used

Variable Distribution

Air pressure Normal distribution with changing mean and variance

Rainfall
Logistic regression for occurrence (wet / dry), gamma
distribution with changing mean & constant coefficient of
variation (CV) for wet-day amounts

Air temperature Normal distribution with changing mean and variance

Wind speed Gamma distribution with changing mean & constant CV

Wet bulb temperature Normal distribution with changing mean and variance

Short wave radiation Gamma distribution with changing mean & constant CV

Cloud cover Gamma distribution with changing mean & constant CV
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Rglimclim model for Thames

Thames: structure of multivariate model

Mean sea level pressure (MSLP)Mean sea level pressure (MSLP)

Mean 2m air temperatureMean 2m air temperature

Mean relative humidity at 
~1000hPa

Mean relative humidity at 
~1000hPa

Atmospheric river frequency 
(moisture content >300 kg m-1 s-1)

Atmospheric river frequency 
(moisture content >300 kg m-1 s-1)

Integrated vapour transport during 
atmospheric river events

Integrated vapour transport during 
atmospheric river events

Monthly indices of large-scale 
structure 

Means are for region 50°-60°N, 0°-10°W
Air pressureAir pressure

PrecipitationPrecipitation

Air temperatureAir temperature

Wind speedWind speed

Wet bulb temperatureWet bulb temperature

Local variables in weather 
generator 

Short wave radiationShort wave radiation

Cloud coverCloud cover
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Summary of Part 2

Key issue is distinction between systematic regional variation and
residual inter-site dependence
Multi-site methods in literature tend to be designed with specific types of
problem in mind, e.g.:

Hidden Markov Model (in usual form) suitable for widely separated
locations in large regions
In small areas, distribution of # of wet sites may better characterise
dependence in precipitation occurrence

Data availability may constrain types of multi-site WG that are appropriate
Beware interpolation / gridded datasets!

Limited software available for multi-site, multivariate weather generation

Richard Chandler (r.chandler@ucl.ac.uk) Stochastic weather generators Third VALUE training workshop 56 / 85



Part 3: Assessing weather generator performance

What to assess? Assessing stochastic models Extremes Multi-site performance Summary

Structure of session

Motivation

Assessing stochastic models

Extremes

Multisite performance
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Goals of an assessment

Assessing weather generator performance

Questions:
A user wants to drive an impacts model with a weather generator.

1 How to choose from wide range of generators available?
2 How to determine whether a given generator is fit for purpose?

Issues to consider:
Ease of use & level of technical sophistication required

Applicability of key assumptions in user’s context

Ability to calibrate using available data

Credibility of mechanism for incorporating climate change effects
(in user’s context)

Ability to reproduce key features of interest in past observations
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Key features

What are ‘key features of interest’?

Relevant features / properties are context-dependent
From user perspective, ultimate test is realism of impacts model output

But this requires user to build WG & run impacts model — may be
time-consuming
Also, deficiencies may be due to impacts model rather than WG

Aim therefore:
Provide information that enables user to judge whether WG has

potential to provide suitable inputs to, e.g., impacts model
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Key features

Example: distributed hydrological modelling

Complex hydro(geo)logical
models convert spatial rainfall
into runoff / groundwater levels
etc.

Precise details depend on land
use, soil type, geology, current
soil state, river levels etc.

Thanks to colleagues at British Geological Survey

But to zero-order approximation: need realistic areal average rainfall and
realistic rainfall at each individual location — hence focus on these
quantities to assess WG performance in this application
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The VALUE framework

The VALUE framework

Decision tree for validating downscaling methods
1 Identify phenomena of interest (precipitation, heatwaves, weather

during growing season etc.
2 Identify relevant aspects of weather distribution that are relevant

(marginal, temporal, spatial, inter-variable)
3 Identify relevant indices to quantify performance with respect to

each aspect
4 Identify performance measures to assess ability of downscaling

method to reproduce indices
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The VALUE framework

Application of framework to hydrological modelling example

Phenomena : precipitation and evapotranspiration over catchment

Aspects : marginal (distributions), temporal (spell lengths, seasonality),
spatial and intervariable

Indices : e.g. mean, variance, proportion of dry days, autocorrelations,
phase and amplitude of seasonal cycle, spatial maps of other
properties, variability of areal mean, inter-site correlations,
inter-variable correlations

Measures : e.g. bias or relative error
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Issues

Issues in the assessment of stochastic models

Means, variances, threshold exceedances, correlations etc. often cannot
be deduced from weather generator structure — must use simulations to
estimate WG properties

Stochastic weather generators produce random realisations⇒ do not
expect exact match between WG properties and observations

Question is not ‘does WG output match observations?’, but ‘do
observations look like a realisation from the WG?’
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Example: validation of mean temperature

Example: simple temperature generator

Hypothetical example

Phenomenon: temperature

Aspects: marginal distribution

Index: mean

Performance measure: ???

Weather generator is

Yt = β0 + β1 cos

[
2π×day of year

365

]
+ β2 sin

[
2π×day of year

365

]
+ β3Yt−1 + εt

εt ∼ N(0,σ2)

Daily observations available 1980–2010
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Example: validation of mean temperature

Temperature example: ‘obvious’ approach?

Fit model to observations:
Suppose you get β̂0 = 3, β̂1 = 3, β̂2 = 0.5, β̂3 = 0.75, σ2 = 1, so model is

Yt = 3 + 3cos

[
2π×day of year

365

]
+

1
2

sin

[
2π×day of year

365

]
+

3
4

Yt−1 + εt

Figure out mean temperature for fitted model (β0/(1−β3) = 12◦ —
obvious?).

NB if interested: mean seasonal cycle for this model given in equation (19)
of Yang et al. (2005a) — not at all obvious! See Exercise 2

Compare observed and modelled means — perhaps use t-test?
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Example: validation of mean temperature

Problems with ‘obvious’ approach

Usually infeasible to derive properties of interest directly from model
specification⇒ must use simulations

For nonstationary weather generators, use many simulations
corresponding to same time period as observations

Same data used to fit and check model — means guaranteed to be
similar!

Need independent dataset for testing
E.g. fit to data from 1980–2000, test on data from 2001–2010
More sophisticated approach: block cross-validation as in VALUE
framework
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Example: validation of mean temperature

Second attempt

Fit model to observations 1980-2000

Carry out many simulations of 2001–2010 period to find mean
temperature for this period under model

Compare with observed mean temperature

How to make comparison?

Test hypothesis H0 : µsim = Ȳobs? (WRONG!)
Test null hypothesis H0 : E

(
Ȳobs

)
= µsim? (X?)

Care required with interpretation: relevant question is not ‘is µobs = µsim?’,
but ‘is |µobs−µsim|’ small enough for WG to be useful?’
Also, standard test assumptions unlikely to hold (independence etc.)

Some role for informal approach
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Informal approaches

Informal approaches

Key question:

Does observed series ‘look like’ weather generator realisation?

Idea: look at distribution of selected indices across many simulations
E.g. 100 simulations give 100 different mean temperatures to form
simulated distribution

If observations were produced by weather generator, observed index
should be sampled from this distribution

Implication: pool observed index with n simulated indices, rank of
observation equally likely to be 1,2, . . . or n + 1
Basis for Probability Integral Transform (PIT):

PIT =
rank of observed index

n + 1
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Informal approaches

PIT and related techniques

If many ‘replicate’ indices are computed, can produce PIT histogram —
should be flat within sampling error

E.g. annual means over 50-year period

Alternative: for ‘similar but unreplicated’ indices, plot simulated
distributions overlain with observations (‘caterpillar plots’):

E.g. summary statistics for each month of year
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Informal approaches

Example: northern Iberia precipitation

Monthly indices for period 1960–1990:

2 4 6 8 10 12

2
4

6
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Site 1394, variable Precipitation:
Mean

Month

m
m

2 4 6 8 10 12

50
10

0
15

0
20

0
25

0
30

0

Site 1394, variable Precipitation:
Max

Month

m
m

Distributions from 100
simulations of 1960–1990
period, with observed statistics
superimposed

Coloured bands show range,
median and quartiles of
simulated distributions

Shows underestimation of mean precipitation in January & February

Note skewed simulation distribution of monthly maxima — typical for
precipitation (and realistic according to observations)
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Informal approaches

Another example: northern Iberia temperature

Annual means for period 1960–1990:

1960 1965 1970 1975 1980 1985 1990

12
.5

13
.5

14
.5

VALUE stations, annual mean temperature 1960−1990

Year

°C

Histogram of PIT

PIT

F
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qu
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cy

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

NB uncertainty in observations due
to missing data — uncertainty
envelope produced using multiple
imputation in Rglimclim

39 imputations used for 95%
uncertainty interval on
observations

Only 31 annual values⇒ coarse
resolution chosen for PIT
histogram

WG here fails to capture trend (no atmospheric predictors) — does this
matter? (is this aspect important?)
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Informal approaches

Distribution comparisons: quantile-quantile plots

Further option to assess overall distribution:
Compute selected quantiles of observations
Compute corresponding quantiles of pooled distribution from all simulations
Plot against each other — should be roughly equal

Quantile estimates are biased near 0 and 1, especially with small
samples in observations⇒ avoid extreme quantiles here
Can use to assess agreement in, e.g., overall distribution of annual
maxima throughout simulation period

Example in practical session
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Motivation

Assessing extremes — motivation

Many applications support decisions with implications over long periods
e.g.

Flood defences : design lifetime 30–50 years
Investment in energy infrastructure : returns over 10–20 year periods
Agricultural development : adaptation strategies with 5–20 year horizons
Safety of nuclear waste repositories : silly time scales
Risk-based approach: plan for specified chance of coping with worst
scenario in decision horizon

E.g. flood defences: 10% chance of failure in 50 years (say)

Leads to consideration of very rare events:
E.g. ∼ ‘1 in 500 year’ event in flood defence example

Compare with ‘extremes’ often studied in downscaling e.g. 95th
percentile of daily distribution (‘1 in 20 day’)
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Extreme value theory

Extreme value theory

Question:
How to assess credibility of rare events in weather generator simulations?

Possible approach: compare simulated and observed distributions of
(e.g.) annual maxima

Problem: want (e.g.) 99th percentile of distribution of annual maximum,
have (say) 30-year record⇒ 30 observations

Need principled basis for heroic extrapolation!

Extreme value theory provides such a basis — analogous to Central Limit
Theorem for means
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Extreme value theory

Extreme Value Theory in one slide

Key result (paraphrase)

In almost all situations of practical interest, the maximum of a large collection
of independent, identically distributed random variables has approximately a

Generalised Extreme Value (GEV) distribution

Parameters of distribution: shape ξ, scale σ, location µ

Result also holds for dependent sequences

Can also argue that it should hold for, e.g., annual maxima even though
variables are not identically distributed (Chandler and Scott, 2011, §6.4)

Hence common to fit GEV distributions to annual maxima (mximum
likelihood preferred) and use fitted distributions for extrapolation

GEV result underpins all mathematically justified alternative methods e.g.
peaks-over-threshold, point process likelihood — see Coles (2001) for
more details
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Extreme value theory

Implication of EV theory

Recall the question . . .

How to assess credibility of rare events in weather generator simulations?

. . . and the previously suggested answer:

Compare simulated and observed distributions of (e.g.) annual maxima

Extreme Value Theory provides defensible alternative: replace observed
distribution with GEV distribution fitted to observed maxima

Need to account for uncertainties in GEV-based extrapolation — maximum
likelihood estimation enables this
Uncertainties usually shown on return level plot: shows estimate of values
exceeded with frequencies from once per year to once every N years
Observations added to plot as check on GEV fit

Possibility for weather generator assessment: add simulated maxima to
‘observed’ return level plot (example in practical session)
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Extreme value theory

Example of return level plot
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Return level plot for annual maximum sea levels at Port
Pirie, South Australia, 1923–1987 (data from ismev

library in R, originally in Coles (2001))
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The GEV shape parameter

The GEV shape parameter

Shape parameter ξ plays crucial role in behaviour of extremes:
ξ < 0: finite upper limit
ξ = 0: infinite upper limit but light tail
ξ > 0: infinite upper limit and heavy tail (potential for ‘black swans’)

If using weather generator for extremes, minimal requirement is that
associated value of ξ is roughly correct

Fact: for independent sequences, underlying distribution determines
value of ξ e.g.

Normal distributions : lead to ξ = 0
Gamma distributions : lead to ξ = 0
Pareto distributions : lead to ξ > 0

But: tail behaviour can be different in dependent sequences specified via
conditional distributions (see Exercise 3)
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Options available

Assessment of multi-site performance

If spatial aspects are important then these must be assessed
Systematic variation: use single-site measures at selected sites

May want to map single-site measures or plot against (e.g.) site altitude —
but would need to reduce previous graphs to single measure e.g. mean
bias over all simulations
NB also mapping involves interpolation — beware artefacts!

‘Residual inter-site dependence’ now better characterised via indices of
joint distributions at sets of sites e.g.

Correlations / variograms of (standardised?) anomalies — similar
comments apply
Probabilities of simultaneous threshold exceedances e.g. Yan et al. (2006)

Alternative approach: work with spatially aggregated daily series
Easier to apply & tests for realistic spatial coherence in WG output
More user-relevant in some applications e.g. hydrological modelling
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Summary of Part 3
Many judgements can be made without assessing WG performance
(what was it designed for, what data are required, . . .)

Different WGs appropriate depending on key features of interest in
application

Aim of performance assessment: determine whether WG has potential to
provide suitable inputs to (e.g.) impacts model

VALUE decision tree (Phenomena→ Aspects→ Indices→ Measures)
helps to structure assessment exercise

Question for stochastic WGs framed as ‘Do observations look like
realisation from WG?’

Need independent test data / block cross-validation for credible
assessments

Clear role for informal / graphical assessments of performance: not ‘is it
right?’ but ‘is it good enough?’
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