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Background
°

The HydEF project

Motivating example

@ HydEF project
(http://www.bgs.ac.uk/changingwatercycle/hydef.html) looking
at hydro(geo)logical impacts of climate change in UK

@ Detailed hydro(geo)logical models require high-resolution weather inputs,
consistent with changing large-scale synoptic conditions as obtained e.g.
from reanalysis products or GCMs
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Background
°

The HydEF project

Motivating example

@ HydEF project
(http://www.bgs.ac.uk/changingwatercycle/hydef.html) looking
at hydro(geo)logical impacts of climate change in UK

@ Detailed hydro(geo)logical models require high-resolution weather inputs,
consistent with changing large-scale synoptic conditions as obtained e.g.
from reanalysis products or GCMs

E.g. variables needed by JULES:

Rainfall rate Air pressure Snowfall rate Air temperature
Downward Downward
Wind speed  Specific humidity short-wave long-wave
radiation radiation

V.

Richard Chandler (r.chandler@ucl.ac.uk) Stochastic weather generators Third VALUE training workshop 2/85


http://www.bgs.ac.uk/changingwatercycle/hydef.html

Background
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Case study: the Thames

Case study: the Thames

Stations used for calibration © Kennet grid nodes

@ Largest catchment in UK
(~ 10000km?) . jj”/
@ Modellers wanted hourly 3')

sequences, 8 variables,
1km? resolution
throughout catchment

o Negotiated settlement: daily sequences, 5 x 5km? resolution, Kennet
subcatchment (186 grid nodes)
@ Data on (most) variables nominally available from 157 stations, 1970

onwards
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Background
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Case study: the Thames

Data availability (I)

@ Hourly data obtained from British Atmospheric Data Centre (BADC),
MIDAS Met Office dataset

@ Available variables: rainfall, snow, air pressure, air temperature, wind
speed, downward SW radiation

@ Missing variables: specific humidity and downward LW radiation

o Can be derived from other variables using standard procedures from
literature

e BUT...
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Background
ooe

Case study: the Thames

Data availability (I1)

Numbers of stations with data (out of 157)

Rainfall Pressure Temperature Wind speed SWR
71 52 140 135 22

Proportions of available observations - Pressure

@ Many stations have short /
incomplete/ patchy records

:

Year
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Requirements

Motivating example: summary of requirements

@ Need to generate daily time series for ...
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Requirements

Moti

vating example: summary of requirements

Need to generate daily time series for ...

Several variables simultaneously, with different distributions and
preserving inter-variable relationships ...

at many locations simultaneously,
preserving inter-site relationships ...
... including locations for which no
observations are available ...

... and substantial amounts of
missing data at locations where
observations are available ...

including a realistic climate change
signal.

Richard
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Requirements

Structure of session

Weather generators: what and why?
Weather generators vs RCMs
‘Classical’ generators

Other types of weather generator

Incorporating climate change information
.

Issues in multisite generation

Classes of multisite generator
Data requirements
Software packages available, including Rglimclim

The Thames revisited
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Part 1: Introduction to weather generators




Weather generators: what and why?
°

Definition

What is a weather generator?

IPCC summary
(www.ilpcc-data.org/quidelines/pages/weather generators.html)

A stochastic weather generator (WG) produces synthetic time se-
ries of weather data of unlimited length for a location based on the
statistical characteristics of observed weather at that location.

(remainder of IPCC summary strictly correct but potentially misleading — and
no mention of multi-site generation)

@ Additional requirement here: ability to capture climate change signal
using information from GCMs
o NB tacit assumption that GCMs do not provide useful information at
resolution required by users (classic example: Abourgila 1992)
o ‘Perfect Prognosis’ approach to downscaling: GCM outputs taken as

correct (possibly after processing) m
&
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Weather generators: what and why?
[ 1]

Rationale

Why time series?

@ Interest in assessing response of complex systems to climate change
@ System response depends on how weather effects are aggregated:

e UK flooding, Boscastle, August 2004: localised
intense rainfall in one day (Met Office, 2005)

e UK flooding, winter 2000—-2001: two-month
rainfall totals exceeding 200-year return period
(Finch et al., 2004)

o European heatwave, 2003: excess deaths
associated with extended periods of extreme
heat without night-time cooling
(http://en.wikipedia.org/wiki/2003_ e,
European_heat_wave) Boscastle, August 16th 2003

e Crop growth sensitive to quantity and timing of
precipitation (Kniveton et al., 2009)

@ etc. etc.
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Weather generators: what and why?
oe

Rationale

Generic requirements

@ Aim to reproduce some subset of time series features (“aspects” in
VALUE vocabulary)

@ Subset depends on context

Marginal aspects : mean, variance, frequency of threshold
exceedances, return levels, ...

Temporal aspects : trends, seasonality, autocorrelation, spell lengths,

Spatial aspects : systematic regional variation, residual inter-site
dependence, simultaneous threshold exceedances, ...

Inter-variable relationships : correlations, frequency of joint events, . ..
V.
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Weather generators: what and why?
.

WGs vs RCMs

Weather generators versus RCMs

WGs RCMs
@ Empirically based @ Physically based
@ Stochastic in nature @ Deterministic in nature
@ Cheap to simulate @ Expensive to simulate
@ Require calibration (fitting) on @ No user calibration required
case-by-case basis
@ Can choose method and tune to @ Limited options for

meet application requirements application-specific tuning

@ Rely on empirical relationships Rely on laws of physics
persisting into future persisting into future
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The ‘classical’ generator
°

WGEN

The ‘classical’ weather generator

@ First ‘weather generator’: WGEN based on Richardson (1981) for daily
weather sequences

@ Built on earlier models for daily precipitation going back to Gabriel and
Neumann (1962)

@ Model precipitation first, then other variables conditional on precipitation
— because precipitation has challenging statistical properties

@ Markov chain for precipitation occurrence, gamma distribution for
intensity, separate parameters for each month of the year

@ (Some) other variables conditioned on precipitation status e.g. separate
distributions for wet and dry days, cosine functions fitted to parameters for

seasonality
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The ‘classical’ generator
[ 1]

Markov chains

Markov models for precipitation

The basic Markov precipitation model

@ Let Y; =1 ifday tis ‘wet’, 0 otherwise

@ Markov assumption:
P(Y;=y|Yi-1,Yi—2,...) = P(Yy=y|Y;—1) for y =0,1

@ Leads to 2-state Markov chain for precipitation occurrence

@ Characterised by transition probabilities:
T4 = P(Yt: 1|Yt,1 = 1), o1 = P(Yt: 1|Yt,1 :0)

@ Wet-day intensities assumed independent and to follow some
distribution (exponential, gamma, ...)
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The ‘classical’ generator
oe

Markov chains

Properties of Markov chains

@ Temporal dependence characterised via transition probabilities:

o If my1 =~ 1 then one wet day will very likely follow another
o If mp1 ~ 0 then one dry day will very likely follow another
e efc.

@ 2-state Markov chain has equilibrium distribution: long-run proportion of

wet days is
Tlo1

1+ Mor — Ty
@ So transition probabilities also characterise marginal aspects of
precipitation occurrence

P(Yi=1) =

@ Higher-order chains give more flexibility e.g. specifying
P(Y:=1[Yi-1 = y1,Yi2 = y2).
@ See Exercise 1.
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The ‘classical’ generator
°0

Deficiencies

Deficiencies of basic WG

From IPCC guidelines:

One criticism of the Richardson-type WG is its failure to describe ad-
equately the length of dry and wet series (i.e. persistent events such as
drought and prolonged rainfall). These can be very important in some ap-
plications (e.g. agricultural impacts).

Other common problems:

@ Tendency to underestimate variability of seasonal means / totals
(“overdispersion” — see, e.g., Katz and Parlange 1998).

@ Underestimation of high return levels e.g. 100-year daily maxima
(independent exponential / gamma intensity distributions do not yield
‘heavy tailed’ extreme distributions observed in daily rainfall data e.g.

Katz et al. 2002)
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The ‘classical’ generator
oe

Deficiencies

Approaches to remedying deficiencies in basic WG structure

Many suggestions in literature:

@ Higher-order Markov chains to improve wet and dry spell performance
Heavy-tailed intensity distributions to improve extremal behaviour
Introduce latent classes with separate parameter sets, to increase
variability in seasonal means

Nonparametric modelling to avoid specific distributional assumptions

Etc. etc.
An elephant in the room?

What about correlation
between successive days’
precipitation intensities?
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Other weather generator types
°

Summary of alternative approaches

Other approaches to weather generation

@ Approaches based on spell lengths
@ Resampling methods
@ Generalised linear models

@ Subdaily weather generators

VALUE inventory and review of statistical downscaling
methods — summary at http://convection.zmaw.de/
fileadmin/user_upload/convection/Convection/WG_
Presentations/2014.01.29-30/SDS_COST_Inventory_
AFischer.pdf
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Other weather generator types
°

Generators based on spell lengths

Generators based on spell lengths

@ Idea: resolve problems with spell-length distributions by placing these at
heart of generator:

o Start by generating wet and dry spell lengths
e Then proceed similarly to ‘classic’ generator
@ Approach common in agricultural applications where spell lengths are
important
@ LARS-WG is best-known example:
o Uses ‘semi-empirical’ spell length distributions fitted separately for each
month

@ See Semenov et al. (1998) for summary and comparison with WGEN
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Other weather generator types
°

Resampling methods

Resampling methods

Idea: for each day of simulation, choose values at random from
observations on days ‘similar to’ current day
‘Similarity’ could be, e.g.:

o All values on same day of year (seasonality)

o Values from days with similar previous days’ weather (autocorrelation)
o Values from days with similar large-scale synoptic conditions

Nonparametric approach makes minimal assumptions
Inter-variable dependencies automatically preserved
Cannot generate values outside range of those previously observed

Cannot consider too many factors in determining similarity (‘curse of
dimensionality’)

More details: Buishand and Brandsma (2001)
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Other weather generator types
€000

Generalised linear models

Generalised linear models (GLMs)

@ ldea: embed ‘classical’ generator within wider class of models
@ Grunwald and Jones (2000) showed that Markov-based models are
special cases of Generalised Linear Models (GLMs)

o GLMs first applied to daily rainfall by Coe and Stern (1982).
e Cornerstone of modern statistical practice in all application areas
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Other weather generator types
0000

Generalised linear models

GLM for precipitation occurrence

@ Common to use logistic regression model:

i <1 i ) =xip=ni® sy = p=[1+exp(-n)]"
Mt

where:
o py is probability of precipitation on day ¢
@ X; is vector of covariates (predictors)
o [ is coefficient vector

e E.g. setx; = (1 Yt_1)/, B = (Bo B )/, then p; = [1 + g (BotPs Yt—1)] -1

e When Y, =0,p=[1+ e’B0T1 — this is o7 in Markov formulation
o When Y, 1 =1,p=[1+ e*(50+ﬁ1)]71 this is 701
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Other weather generator types
00e0

Generalised linear models

GLMs for other variables

@ Generic formulation of arbitrary (now generic) variable Y;
o {Y;} considered drawn from common family of distributions (normal,
gamma, Poisson, Bernoulli, ...)
e Conditional on covariate vector x;, expected value of Y; is uy = E ( Y;[x;)
o y; related to linear predictor 1; = x,[ via relationship g(u;) = 1; for link
function g(-).
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GLMs for other variables

@ Generic formulation of arbitrary (now generic) variable Y;
o {Y;} considered drawn from common family of distributions (normal,
gamma, Poisson, Bernoulli, ...)
e Conditional on covariate vector x;, expected value of Y; is uy = E ( Y;[x;)
o y; related to linear predictor 1; = x,[ via relationship g(u;) = 1; for link
function g(-).

@ Extends linear regression model (normal distributions, g(ut) = u).

@ E.g. use gamma GLM with log link for precipitation intensity

e Can model temporal dependence in intensity by including Y;—1 in x; —
maybe resolve overdispersion problem?
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Other weather generator types
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Generalised linear models

GLMs for other variables

@ Generic formulation of arbitrary (now generic) variable Y;
o {Y;} considered drawn from common family of distributions (normal,
gamma, Poisson, Bernoulli, ...)
e Conditional on covariate vector x;, expected value of Y; is uy = E ( Y;[x;)
o y; related to linear predictor 1; = x,[ via relationship g(u;) = 1; for link
function g(-).

@ Extends linear regression model (normal distributions, g(ut) = u).
@ E.g. use gamma GLM with log link for precipitation intensity
o Can model temporal dependence in intensity by including Y;_1 in X; —
maybe resolve overdispersion problem?
@ Unified approach for all variables — differences only in choice of
distribution
@ Coefficients estimated using maximum likelihood
@ Assumptions can be checked
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Other weather generator types
ocooe

Generalised linear models

Interactions

@ With two covariates xiy, Xo, suppose 1 = Bo + B1 X1 + BoXos.
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Generalised linear models

Interactions

@ With two covariates xiy, Xo, suppose 1 = Bo + B1 X1 + BoXos.
@ Suppose also that x» modulates effect of x;: 31 = Yo + Y1 X2¢. Then
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Generalised linear models

Interactions

@ With two covariates xiy, Xo, suppose 1 = Bo + B1 X1 + BoXos.
@ Suppose also that x» modulates effect of x;: 31 = Yo + Y1 X2¢. Then

Ne = PBo+ (Yo+7v1xer) X1t + Paxos
= Bo+Yoxit + PaXor + Y1 X1: %ot
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Generalised linear models

Interactions

@ With two covariates xiy, Xo, suppose 1 = Bo + B1 X1 + BoXos.
@ Suppose also that x» modulates effect of x;: 31 = Yo + Y1 X2¢. Then

Ne = PBo+ (Yo+7v1xer) X1t + Paxos
= Bo+Yoxit + PaXor + Y1 X1: %ot

@ Easily handled in usual framework: just define extra covariate xi;xo;.
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Other weather generator types
ocooe

Generalised linear models

Interactions

@ With two covariates xiy, Xo, suppose 1 = Bo + B1 X1 + BoXos.
@ Suppose also that x» modulates effect of x;: 31 = Yo + Y1 X2¢. Then

Ne = PBo+ (Yo+7v1xer) X1t + Paxos
= Bo+Yoxit + PaXor + Y1 X1: %ot

@ Easily handled in usual framework: just define extra covariate xi;xo;.
@ Higher-order interactions can be handled similarly.

Consequence for weather generators

@ Seasonal variation in parameters is just an
interaction between seasonal and other covariates

@ Eliminates need for separate fitting to different
months / seasons
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Other weather generator types
.

Subdaily generators

Subdaily generators

@ Subdaily precipitation structure too complex for many of previous model
types

@ Subdaily models attempt to represent underlying mechanisms in more or
less simplified form

@ Two broad classes of subdaily precipitation generator:

o Poisson cluster models — represent precipitation as superposition of
‘cells’ clustered within ‘storms’

o Multiscaling models — exploit systematic variation of precipitation
summary statistics with temporal resolution

Up-to-date review in Chandler et al. (2014).
@ Limited work on subdaily generation for other variables
@ Subdaily generation not considered further here.
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Incorporating climate change
°

Background

Incorporating climate change information

@ Weather generation in climate change context requires ability to connect
WG parameters / outputs with large-scale atmospheric structure
@ Various heuristic schemes e.g. additive / multiplicative change factors
based directly on GCM changes in variables of interest
o Inappropriate for (e.g.) precipitation because change factors do not affect
wet / dry properties
@ Some more considered applications apply change factors to relevant model
parameters e.g. (Kilsby et al., 2007) — approach used in UKCPQ9 national
climate projections for UK
(http://ukclimateprojections.metoffice.gov.uk/).

@ More formally: integrate indices of large-scale structure formally into

model specification
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Incorporating climate change
.

Predictor selection

Predictor selection

Requirements for indices of large-scale structure

@ Indices must have genuine relationship with local
variable(s) of interest

o Relationship must be robust to changes in climate
o Relationship must capture climate change signal

@ Indices must be well simulated by GCMs

@ See also IPCC guidelines at
www.1ipcc-data.org/guidelines/dgm_no2_v1_09_2004.pdf (but
NB review of weather generators now out-of-date)

@ Requirements unverifiable(!) Pragmatic response:

o Focus on variables and scales at which GCMs might reflect reality; and
acknowledge difficulty (Smith, 2002).

o Try to incorporate known mechanisms into WG structure
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Incorporating climate change
[ 1e}

Synoptic indices

Synoptic indices

@ One possibility: construct indices of large-scale structure and incorporate
directly into weather generator model
@ Examples of indices:

e Teleconnection indices: ENSO, NAO, ...

o Means of relevant fields e.g. MSLP, temperature, ... over relevant area

@ Principal modes of relevant fields (e.g. EOFs) — but NB can be hard to
align modes from GCMs with those from observations

@ Typically need measures of moisture availability where precipitation is
concerned (Charles et al., 1999b)

@ Relevant indices may vary with region and season

Richard Chandler (r.chandler@ucl.ac.uk) Stochastic weather generators Third VALUE training workshop 28/85



Incorporating climate change
oe

Synoptic indices

Incorporating synoptic indices into WG models

@ ‘Classical’ WG models: difficult, mostly done by parameter perturbation
or weather classification (next slide)
@ Resampling methods: incorporate indices in metric used to select
candidate days for resampling
@ GLMs: incorporate directly as additional covariates
o Interactions account for regional / seasonal variation in effect size
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Incorporating climate change
.

Weather classification

Weather classification

@ Alternative to direct use of indices: classify days into ‘weather types’
based on circulation patterns

o Examples: Jenkinson-Collinson, GroBwetterlagen, etc.
o Classification may also depend on predictand(s) (see practical session)

Incorporating weather types into WGs

@ Most WG models: fit separate parameters for each type
@ Resampling methods: resample from days with same type

@ GLMs: define ‘dummy’ 0/ 1 covariates to select type for each day

o With G types (groups), need G — 1 dummy covariates
o Coefficients are deviations from remaining ‘reference type’

@ NB can be parameter-intensive if many types are used

v

@ Useful resource for European applications: COST733 intercomparison

project (http://cost733.met.no/)
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Summary of Part 1
°

Summary of Part 1

@ Weather generators are stochastic models to produce (usually daily) time
series of one or more variables

@ Precipitation is fundamental due to modelling challenges

@ ‘Classical’ structure based on Markov chain for precipitation occurrence;
performs poorly with respect to spell lengths, interannual variability and
extremes

@ Other suggestions designed to address deficiencies directly or to make
minimal assumptions about distributions etc.

@ GLMs encompass ‘classical’ structures within flexible framework that
permits many extensions to basic model structure (including ease of
incorporating large-scale information)

@ In climate change work, predictor selection requires care
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Part 2: Multisite generators




Key issues
°

The need for multisite generators

Multisite generation

@ Methods in Part 1 primarily developed for series at single site
@ Some applications need simultaneous time series at multiple sites
o E.g. hydrological studies of large catchments
o Development of national energy infrastructure to respond to local variation
in energy demand / risk of damage to generators etc.
e Strategies for health provision or wildfire management in heatwaves
@ In all examples above, spatial organisation of weather is important:

o Do all sites experience similar weather simultaneously?
o Or are only one or two sites affected at any one time?

@ May also need to generate at ungauged sites (cf Thames example)

Additional benefit of multisite analysis:

Pooling data across sites can increase modelling
precision (“space-for-time” / “borrowing strength”)
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Key issues
[1e}

Regional variation and residual dependence

‘Spatial dependence’: a key distinction

Systematic regional variation: Residual inter-site dependence:
A 7 2 g

Auerage Velue ()

-
100:720
0100
7050
70

From UK Met Office ) From www.weatheronline.co.uk

@ Systematic regional (spatial) variation = ‘climatology’
© Residual inter-site dependence = ‘spatial organisation of anomalies’
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Key issues
oce

Regional variation and residual dependence

Implications of distinction

A truly multisite weather generator must address both aspects of spatial
structure

Relatively few truly multisite WGs widely available ...

... and very few multisite, multivariate WGs
Aim here: review most promising options that are truly multisite

o Deliberately exclude those that do not address residual inter-site
dependence

@ Focus inevitably on precipitation since few multisite WGs available for
other variables
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Model classes
°

Multisite extensions of classical generator

Multisite extensions of classical generators

@ Most multisite extensions of classical generator follow Wilks (1998)
@ Fit standard generator at each location separately
o Systematic variation captured by different parameters at each site (so
cannot use directly at ungauged locations)
@ Residual inter-site dependence captured by using correlated random
numbers in simulations

o Exploit ease of generating correlated Gaussian random numbers

e Occurrence: use correlations for latent Gaussian variables (next slide)

o Intensity: work with intensities transformed to Gaussianity, then
back-transform

@ Correlations estimated by matching to observed correlations
@ Occurrence: ‘trial and error’ simulation-based scheme — unsuitable for

large numbers of sites
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Model classes
.

Latent Gaussian variables

Latent Gaussian variables

Convenient way to generate correlated vector Y = (Y;,..., Ys) of binary (0/1)
variables:

@ Generate vector Z = (Z;,...,Zs)’ of correlated Gaussian variables, with
Zs~ N(0,1) fors=1,...,S.
@ Foreach s, set Ys = 1if Zg > Ag, Ys = 0 otherwise
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Convenient way to generate correlated vector Y = (Y;,..., Ys) of binary (0/1)
variables:

@ Generate vector Z = (Z;,...,Zs)’ of correlated Gaussian variables, with
Zs~ N(0,1) fors=1,...,S.
@ Foreach s, set Ys = 1if Zg > Ag, Ys = 0 otherwise

@ Choose thresholds A1, ..., As to obtain desired probabilities of
occurrence at each site
@ Choose correlations among (Zs) to obtain desired dependence in (Ys)
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Latent Gaussian variables

Latent Gaussian variables

Convenient way to generate correlated vector Y = (Y;,..., Ys) of binary (0/1)
variables:
@ Generate vector Z = (Z;,...,Zs)’ of correlated Gaussian variables, with

Zs~ N(0,1) fors=1,...,S.

@ Foreach s, set Ys = 1if Zg > Ag, Ys = 0 otherwise

@ Choose thresholds A1, ..., As to obtain desired probabilities of
occurrence at each site

@ Choose correlations among (Zs) to obtain desired dependence in (Ys)

e ‘Standard’ approach in WG literature: match to observed correlations
e Easier approach: match to joint occurrence probabilities (enables direct
numerical calibration, see Ambrosino et al. 2014)
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Latent Gaussian variables

Latent Gaussian variables

Convenient way to generate correlated vector Y = (Y;,..., Ys) of binary (0/1)
variables:
@ Generate vector Z = (Z;,...,Zs)’ of correlated Gaussian variables, with

Zs~ N(0,1) fors=1,...,S.

@ Foreach s, set Ys = 1if Zg > Ag, Ys = 0 otherwise

@ Choose thresholds A1, ..., As to obtain desired probabilities of
occurrence at each site

@ Choose correlations among (Zs) to obtain desired dependence in (Ys)

e ‘Standard’ approach in WG literature: match to observed correlations
e Easier approach: match to joint occurrence probabilities (enables direct
numerical calibration, see Ambrosino et al. 2014)

@ Difficulty: estimated correlations may not be mutually compatible
o Solution: use spatial correlation model fitted to estimates
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Model classes
©0000

Other extensions of single-site models

Other extensions of single-site models

@ Resampling methods: conceptually identical to single-site case
o Automatically reproduces distributions, dependence between sites &
variables etc.
e Cannot resample at ungauged locations

Richard Chandler (r.chandler@ucl.ac.uk) Stochastic weather generators Third VALUE training workshop 38/85
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Other extensions of single-site models

Other extensions of single-site models

@ Resampling methods: conceptually identical to single-site case

o Automatically reproduces distributions, dependence between sites &
variables etc.
e Cannot resample at ungauged locations

@ GLMs: add extra covariates to represent systematic regional variation,
then use e.g. correlation models for residual dependence (Chandler and
Wheater, 2002; Yang et al., 2005b).

o Extra covariates: altitude, functions of geographical coordinates etc.

o Interactions allow regional variation of other model parameters

o Regional covariates and correlation functions allow simulation at ungauged
locations

Models fitted under ‘working’ assumption of independence, with

subsequent adjustments to uncertainty assessments (see practical

session)
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Model classes
0®000

Other extensions of single-site models

Additional multisite class: transformed Gaussian variables

@ Idea: let X; be vector of correlated Gaussian variables on day ¢, and
generate vector Y; of precipitation values as

) xBitxe>o0
Yst = N .
0 otherwise.
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Other extensions of single-site models

Additional multisite class: transformed Gaussian variables

@ Idea: let X; be vector of correlated Gaussian variables on day ¢, and
generate vector Y; of precipitation values as

I XE itxg>o0
Yst = N :
0 otherwise.

@ Similar to latent Gaussian approach for occurrence, but generates
occurrence and intensity simultaneously

@ Parameter 3 controls shape of intensity distribution

@ Mean vector and covariance matrix of X; simultaneously control
occurrence probabilities, mean intensity and inter-site dependence.

@ Key reference: Stehlik and Bardossy (2002).
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Model classes
0®000

Other extensions of single-site models

Additional multisite class: transformed Gaussian variables

@ Idea: let X; be vector of correlated Gaussian variables on day ¢, and
generate vector Y; of precipitation values as

I XE itxg>o0
Yst = N :
0 otherwise.

@ Similar to latent Gaussian approach for occurrence, but generates
occurrence and intensity simultaneously

@ Parameter 3 controls shape of intensity distribution

@ Mean vector and covariance matrix of X; simultaneously control
occurrence probabilities, mean intensity and inter-site dependence.

@ Key reference: Stehlik and Bardossy (2002).
o Caveat: in reality, different processes control occurrence and intensity

Richard Chandler (r.chandler@ucl.ac.uk) Stochastic weather generators Third VALUE training workshop 39/85



Model classes
0000

Other extensions of single-site models

Hidden Markov Models

@ Idea (Charles et al., 1999a):
extension of weather typing 0 e @ Q
@ Sequence of weather states

S1,So, ... associated both with 9 @ @ @

typical patterns of precipitation
occurrence Y¢,Yo,... and
large-scale circulation patterns ° @ @ @
Xi,Xo, ...

@ State sequence is Markov chain with transition probabilities determined
by large-scale circulation

@ Precipitation usually assumed conditionally independent given state

e Assumption probably reasonable for large study areas with few sites

o Assumption relaxed by Ailliot et al. (2009).

Richard Chandler (r.chandler@ucl.ac.uk) Stochastic weather generators Third VALUE training workshop 40/ 85



Model classes
0000
Other extensions of single-site models

Example of HMM states and precip patterns

Type 3

Type 5

—\/Hz

(Joint work with Bryson Bates and Steve Charles)
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Model classes
0000®

Other extensions of single-site models

Small study areas

@ Small study areas often have
very high inter-site dependence

@ Occurrence models based on
latent Gaussian correlations can
struggle to capture this ...

@ ... but correlation is not the only
measure of dependence
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Other extensions of single-site models

Small study areas

@ Small study areas often have
very high inter-site dependence

@ Occurrence models based on
latent Gaussian correlations can
struggle to capture this ...

@ ... but correlation is not the only
measure of dependence

Properton of cavs

00 0z o4 o5

January

I -
‘ Tl il e -
o 2 s 4

Hums

m*??f?;?TT_

Humer ot vt ses

From Yang et al. (2005b)

@ Alternative (Yang et al., 2005b): model distribution of # of wet sites
o Beta-binomial is flexible and interpretable family of distributions for this

purpose

o Allows tendency for most sites to be either wet or dry
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Missing data

Data requirements for multisite weather generators

@ Weather generators require calibration to observed data . ..
@ ... but some or all observations are often missing:
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Missing data

Data requirements for multisite weather generators

@ Weather generators require calibration to observed data . ..
@ ... but some or all observations are often missing:
o Individual observations / blocks missing from otherwise complete record

o Different record lengths (short records have missing ends)
e Absence of recording stations at required locations (e.g. subcatchment

centres, nodes of regular grid)
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Missing data

Data requirements for multisite weather generators

@ Weather generators require calibration to observed data . ..
@ ... but some or all observations are often missing:
o Individual observations / blocks missing from otherwise complete record
o Different record lengths (short records have missing ends)
e Absence of recording stations at required locations (e.g. subcatchment
centres, nodes of regular grid)
@ Possible solutions:
e Work just with data available if WG calibration scheme allows it
o Interpolation: estimate missing values (e.g. kriging, inverse distance
weighting, splines etc.)
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Missing data

Data requirements for multisite weather generators

@ Weather generators require calibration to observed data . ..
@ ... but some or all observations are often missing:
o Individual observations / blocks missing from otherwise complete record

o Different record lengths (short records have missing ends)
e Absence of recording stations at required locations (e.g. subcatchment

centres, nodes of regular grid)
@ Possible solutions:
e Work just with data available if WG calibration scheme allows it
o Interpolation: estimate missing values (e.g. kriging, inverse distance
weighting, splines etc.)

Strong recommendation:

NEVER, on any account, work with interpolated
precipitation data!!!
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Dangers of interpolation

Interpolation: what'’s the problem?

“Interpolation” here means using ‘best’ estimates of missing values J
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@ Interpolated values are smoothed =- variability reduced (affects, e.g.,
extremes)
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Interpolation: what'’s the problem?

“Interpolation” here means using ‘best’ estimates of missing values J

@ Interpolated values are smoothed =- variability reduced (affects, e.g.,
extremes)

@ Interpolation introduces artificial inhomogeneities e.g. due to different
distances from nearest neighbouring gauges ...
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Dangers of interpolation

Interpolation: what'’s the problem?

“Interpolation” here means using ‘best’ estimates of missing values J

@ Interpolated values are smoothed =- variability reduced (affects, e.g.,
extremes)

@ Interpolation introduces artificial inhomogeneities e.g. due to different
distances from nearest neighbouring gauges ...

@ and it gives false impression of reduced uncertainty
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Dangers of interpolation

Example: simulation experiment

@ Simulate 30-year sequences at

Map of simulation region

12 locations (blue triangles): VW oy &
o Multi-site GLM used: identical \/ v 4
structure at all sites
A\ w

e Sequences ‘typical’ of SE

England
o Spatial scale: ~ 75% of days ©
have sites all wet or all dry, [Vouge 0 Granome A\

wet-day inter-site correlations
~ 0.6-0.8.
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@ Simulate 30-year sequences at Mapof simton fegion
12 locations (blue triangles): VW oy &
o Multi-site GLM used: identical VARV V|
structure at all sites M
e Sequences ‘typical’ of SE Vo v
England
o Spatial scale: ~ 75% of days ©
have sites all wet or all dry, [voume o cian] A\
wet-day inter-site correlations
~ 0.6-0.8.

@ Use kriging to create gridded daily dataset from simulations
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Dangers of interpolation

Example: simulation experiment

@ Simulate 30-year sequences at Mapof simton fegion
12 locations (blue triangles): VW oy &
o Multi-site GLM used: identical VARV V|
structure at all sites M
e Sequences ‘typical’ of SE Vo v
England
o Spatial scale: ~ 75% of days ©
have sites all wet or all dry, [voume o cian] A\
wet-day inter-site correlations
~ 0.6-0.8.

@ Use kriging to create gridded daily dataset from simulations
@ Regular grid: 12 nodes (red squares)

@ Compare annual maxima / return levels for original & gridded data

Richard Chandler (r.chandler@ucl.ac.uk) Stochastic weather generators Third VALUE training workshop 45/85



Dangers of interpolation

Results of simulation experiment

Distributions of annual maxima, and pooled return level estimates

Simulation experiment: distributions of annual maxima in 30-year period

o Return Estimate (mm)
8 Sranodes period Original Gridded
’ 10 yr 44.0 38.0
AR T i 50 yr 57.8 49.4
o 100 yr 63.9 54.4
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o Return Estimate (mm)
8 Sranodes period Original Gridded
’ 10 yr 44.0 38.0
AR T i 50 yr 57.8 49.4
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@ Maxima for gridded data are smaller and less variable
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Simulation experiment: distributions of annual maxima in 30-year period

o Return Estimate (mm)
8 Sranodes period Original Gridded
’ 10 yr 44.0 38.0
AR T i 50 yr 57.8 49.4
o 100 yr 63.9 54.4

@ Maxima for gridded data are smaller and less variable
@ Gridding reduces return level estimates by ~ 15%
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Dangers of interpolation

Results of simulation experiment

Distributions of annual maxima, and pooled return level estimates

Simulation experiment: distributions of annual maxima in 30-year period

o Return Estimate (mm)
8 Sranodes period Original Gridded
’ 10 yr 44.0 38.0
R T T 50 yr 57.8 49.4
o 100 yr 63.9 54.4
N Actual return periods for gridded

estimates: 5, 19 and 34 years

@ Maxima for gridded data are smaller and less variable
@ Gridding reduces return level estimates by ~ 15%
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Implications for calibration

Handling missing data

@ When fitting WG models to sites with missing data, ideally choose
approach that does not require complete records

@ Multisite model classes for which this is straightforward:

o Multisite extensions of ‘classical’ models (calibration done site-by-site)
o GLMs

@ Models based on transformed Gaussian fields

@ For simulation at ungauged locations: better to interpolate WG
parameters than data values

o GLM does this automatically via interactions with ‘spatial’ covariates
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Freely-available packages

Software
°

Software packages for weather generation

Name & URL

Notes

LARS-WG

(www.rothamsted.ac.uk/mas-models/larswg.php)

SDSM

(co-public.lboro.ac.uk/cocwd/SDSM/

WeaGETS

(www.mathworks.co.uk/matlabcentral/fileexchange/
29136-stochastic-weather-generator--weagets-)

MulGETS

(www.mathworks.co.uk/matlabcentral/fileexchange/
47537-multi-site-stochstic-weather-generator--mulgetspjoach.

UKCPO9

(ukclimateprojections.metoffice.gov.uk/22540)

Rglimclim

(www.homepages.ucl.ac.uk/~ucakarc/work/glimclim.

html
NHMM
(1amrandom.com/nhmm-package)

Single-site, multivariate. Based on
wet and dry spell length distributions.

Single-site, multivariate. Based on

‘classical’ WG formulation.

Single-site, multivariate, based on
‘classical’ WG formulation.

Multi-site, multivariate. Extension of
WeaGETS, based on Wilks (1998) ap-

Single-site, multivariate, ‘classical
WG formulation but with Poisson clus-
ter model for precipitation component.

Multi-site,
GLMs.

multivariate, based on

Multi-site, univariate, based on hidden

Markov models. m
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Software
€0000

Rglimclim

Rglimclim

@ Software package for developing multivariate, multisite daily weather
generators using GLMs

@ Runs under R (http://www.R-project.org) on all platforms

@ Based on earlier G1imclim package — Fortran 77(!), multisite but
univariate weather generator

@ Adds graphical facilities and diagnostics as well as multivariate modelling
/ simulation capability

@ Flexible model structures allow development based on physical
understanding rather than statistical convenience

@ Allows imputation of missing values (see later)
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Software
00000

Rglimclim

Modelling capability (1)

@ Distributions currently available:

Normal (not very useful)

Heteroscedastic normal (suitable for, e.g., temperature)
Gamma (suitable for, e.g., wind speed, precipitation intensity)
Bernoulli (suitable for, e.g., precipitation occurrence)
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Software
00000

Rglimclim

Modelling capability (1)

@ Distributions currently available:

Normal (not very useful)

o Heteroscedastic normal (suitable for, e.g., temperature)

e Gamma (suitable for, e.g., wind speed, precipitation intensity)
o Bernoulli (suitable for, e.g., precipitation occurrence)

@ Covariate classes:

o ‘Site effects’: flexible representation of systematic regional variation
(‘climatology’)

e Seasonality: various options available

o Autocorrelation: functions of lagged values

e Inter-variable dependence: functions of simultaneous and lagged values of
other variables

o ‘External’ influences e.g. indices of large-scale climate

o Interactions: allow effects of one variable to be modulated by others
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Software
00000

Rglimclim

Modelling capability (I1)

@ Several structures available for representing residual inter-site
dependence to ensure spatial coherence

@ Most based on correlation structures for standardised / Anscombe
residuals (defined so as to have “almost Gaussian” distribution)
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Software
00000

Rglimclim

Modelling capability (I1)

@ Several structures available for representing residual inter-site
dependence to ensure spatial coherence

@ Most based on correlation structures for standardised / Anscombe
residuals (defined so as to have “almost Gaussian” distribution)
@ Additional options available for Bernoulli distributions — needed for
realistic generation of spatial rainfall occurrence:
e Thresholding of latent Gaussian field with spatial correlation structure —
suitable for large regions
o Beta-binomial representation for distribution of ‘wet area’ — suitable for
small catchments where inter-site dependence is uniformly high
o Model based on simple binary weather state process (original G1imclim

model — other options preferable)
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Software
[eJeTe] Yol

Rglimclim

Model fitting and comparison

@ Models fitted using maximum likelihood under (incorrect) assumption of
independence between sites

o Standard IWLS fitting algorithm, augmented to allow estimation of
parameters in nonlinear covariate transformations

o Computationally fast = feasible to fit & compare many different models on
large datasets

o Lose some estimation efficiency compared with fully-specified spatial
model — unimportant for large datasets

o Usual standard errors adjusted for inter-site dependence (‘sandwich
covariance estimation’)

@ Model comparison using likelihood ratio tests adjusted for inter-site
dependence (methodology of Chandler & Bate, Biometrika, 2007)

@ Extensive summary and diagnostic information to identify lack-of-fit and

guide model-building process

Richard Chandler (r.chandler@ucl.ac.uk) Stochastic weather generators Third VALUE training workshop 52/85



Software
ooooe

Rglimclim

Simulation and imputation

@ Simulated sequences can be either unconstrained (conventional WG) or
conditioned on all available observations:

e Allows for multiple imputation of missing observations = quantifies
uncertainty in historical properties

o Can also be used to ‘interpolate’ to regular grid — alternative to gridded
datasets

@ Summary and plot methods check ability to reproduce wide variety of
properties

@ Examples in practical sessions
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The Thames revisited
0

Rglimclim model for Thames

Example: the Thames again

Variables modelled and distributions used

Variable Distribution
Air pressure Normal distribution with changing mean and variance

Logistic regression for occurrence (wet / dry), gamma
Rainfall distribution with changing mean & constant coefficient of

variation (CV) for wet-day amounts
Air temperature Normal distribution with changing mean and variance
Wind speed Gamma distribution with changing mean & constant CV
Wet bulb temperature  Normal distribution with changing mean and variance
Short wave radiation =~ Gamma distribution with changing mean & constant CV
Cloud cover Gamma distribution with changing mean & constant CV

Richard Chandler (r.chandler@ucl.ac.uk) Stochastic weather generators Third VALUE training workshop 54 /85



The Thames revisited
oe
Rglimclim model for Thames

Thames: structure of multivariate model

Monthly indices of large-scale
structure
Means are for region 50°-60°N, 0°-10°W

Local variables in weather
generator

Air pressure

Mean sea level pressure (MSLP) ' .
Precipitation
Mean 2m air temperature [ [}
Air temperature
Mean relative humidity at ‘ 4
~1000hPa Wind speed
Atmospheric river frequency Y
(moisture content >300 kg m' ) | Wet bulb temperature
Integrated vapour transport during Short wave radiation \
atmospheric river events ‘

Cloud cover ]
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Summary of Part 2
°

Summary of Part 2

@ Key issue is distinction between systematic regional variation and
residual inter-site dependence

@ Multi-site methods in literature tend to be designed with specific types of
problem in mind, e.g.:

o Hidden Markov Model (in usual form) suitable for widely separated
locations in large regions

e In small areas, distribution of # of wet sites may better characterise
dependence in precipitation occurrence

@ Data availability may constrain types of multi-site WG that are appropriate
o Beware interpolation / gridded datasets!

@ Limited software available for multi-site, multivariate weather generation
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Part 3: Assessing weather generator performance




Structure of session

@ Motivation

@ Assessing stochastic models
@ Extremes

@ Multisite performance
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What to assess?
°

Goals of an assessment

Assessing weather generator performance

A user wants to drive an impacts model with a weather generator.

@ How to choose from wide range of generators available?
@ How to determine whether a given generator is fit for purpose?

v
Issues to consider:

Ease of use & level of technical sophistication required

o

@ Applicability of key assumptions in user’s context
@ Ability to calibrate using available data
°

Credibility of mechanism for incorporating climate change effects
(in user’s context)

Ability to reproduce key features of interest in past observations
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What to assess?
°

Goals of an assessment

Assessing weather generator performance

A user wants to drive an impacts model with a weather generator.
@ How to choose from wide range of generators available?
@ How to determine whether a given generator is fit for purpose?

v
Issues to consider:

@ Ability to reproduce key features of interest in past observations
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What to assess?
[ 1]

Key features

What are ‘key features of interest’?

@ Relevant features / properties are context-dependent
@ From user perspective, ultimate test is realism of impacts model output

o But this requires user to build WG & run impacts model — may be
time-consuming
o Also, deficiencies may be due to impacts model rather than WG

Aim therefore:

Provide information that enables user to judge whether WG has
potential to provide suitable inputs to, e.g., impacts model
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What to assess?
oe

Key features

Example: distributed hydrological modelling

@ Complex hydro(geo)logical
models convert spatial rainfall
into runoff / groundwater levels
etc.

@ Precise details depend on land
use, soil type, geology, current
soil state, river levels etc.

Thanks to colleagues at British Geological Survey
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What to assess?
oe

Key features

Example: distributed hydrological modelling

@ Complex hydro(geo)logical
models convert spatial rainfall
into runoff / groundwater levels
etc.

@ Precise details depend on land
use, soil type, geology, current
soil state, river levels etc.

Thanks to colleagues at British Geological Survey

@ But to zero-order approximation: need realistic areal average rainfall and
realistic rainfall at each individual location — hence focus on these

quantities to assess WG performance in this application
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What to assess?
°0

The VALUE framework

The VALUE framework

Decision tree for validating downscaling methods

Identify phenomena of interest (precipitation, heatwaves, weather
during growing season etc.

Identify relevant aspects of weather distribution that are relevant
(marginal, temporal, spatial, inter-variable)

Identify relevant indices to quantify performance with respect to
each aspect

© 0 o0 ©

Identify performance measures to assess ability of downscaling
method to reproduce indices
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What to assess?
oce

The VALUE framework

Application of framework to hydrological modelling example

Phenomena : precipitation and evapotranspiration over catchment
Aspects : marginal (distributions), temporal (spell lengths, seasonality),
spatial and intervariable
Indices : e.g. mean, variance, proportion of dry days, autocorrelations,
phase and amplitude of seasonal cycle, spatial maps of other
properties, variability of areal mean, inter-site correlations,
inter-variable correlations

Measures : e.g. bias or relative error
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Assessing stochastic models
°

Issues

Issues in the assessment of stochastic models

@ Means, variances, threshold exceedances, correlations etc. often cannot
be deduced from weather generator structure — must use simulations to
estimate WG properties

@ Stochastic weather generators produce random realisations = do not
expect exact match between WG properties and observations

@ Question is not ‘does WG output match observations?’, but ‘do
observations look like a realisation from the WG?’
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Assessing stochastic models
©000

Example: validation of mean temperature

Example: simple temperature generator

Hypothetical example

@ Phenomenon: temperature @ Index: mean

@ Aspects: marginal distribution @ Performance measure: ???
@ Weather generator is

21 x day of year . | 2w x day of year
Y, = Bo-+picos [#} +Basin [#

365 365
+BsYi—1+&

g ~ N(0,6%)
@ Daily observations available 1980—2010

|
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Assessing stochastic models
000

Example: validation of mean temperature

Temperature example: ‘obvious’ approach?

@ Fit model to observations:
e Suppose you get o = 3, B1 = 3, B2 = 0.5, B3 = 0.75, 6® = 1, so model is

27 x day of year 1 | 2% x day of year
Yy = 343 —_— —sin|————
’ + COS{ 365 }Jr ' [ 365
3
-Yi—1+¢€
+4 t—1+&

@ Figure out mean temperature for fitted model (Bo/(1 —B3) = 12° —
obvious?).
o NB if interested: mean seasonal cycle for this model given in equation (19)
of Yang et al. (2005a) — not at all obvious! See Exercise 2

@ Compare observed and modelled means — perhaps use t-test?
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Assessing stochastic models
00®0

Example: validation of mean temperature

Problems with ‘obvious’ approach

@ Usually infeasible to derive properties of interest directly from model
specification = must use simulations
o For nonstationary weather generators, use many simulations
corresponding to same time period as observations
@ Same data used to fit and check model — means guaranteed to be
similar!
o Need independent dataset for testing
o E.g. fit to data from 1980-2000, test on data from 2001-2010
o More sophisticated approach: block cross-validation as in VALUE
framework
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Assessing stochastic models
ocooe

Example: validation of mean temperature

Second attempt

@ Fit model to observations 1980-2000

@ Carry out many simulations of 2001—2010 period to find mean
temperature for this period under model

@ Compare with observed mean temperature

How to make comparison?

@ Test hypothesis Ho : tisim = Yobs? (WRONG!)
o Test null hypothesis Ho : [ ( Yobs) = tsim? (v ?)
o Care required with interpretation: relevant question is not ‘is tigphs = tsim?’,
but ‘is |tobs — Usim|” small enough for WG to be useful?’
o Also, standard test assumptions unlikely to hold (independence etc.)

@ Some role for informal approach
v
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Assessing stochastic models
©0000

Informal approaches

Informal approaches

Key question:
Does observed series ‘look like’ weather generator realisation?

@ Idea: look at distribution of selected indices across many simulations
o E.g. 100 simulations give 100 different mean temperatures to form
simulated distribution
@ If observations were produced by weather generator, observed index
should be sampled from this distribution
o Implication: pool observed index with n simulated indices, rank of
observation equally likely to be 1,2,... or n41
o Basis for Probability Integral Transform (PIT):

rank of observed index
n+1

PIT =
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Assessing stochastic models
0®000

Informal approaches

PIT and related techniques

@ If many ‘replicate’ indices are computed, can produce PIT histogram —
should be flat within sampling error
e E.g. annual means over 50-year period
@ Alternative: for ‘similar but unreplicated’ indices, plot simulated
distributions overlain with observations (‘caterpillar plots’):
o E.g. summary statistics for each month of year
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Assessing stochastic models
00000

Informal approaches

Example: northern lberia precipitation

Monthly indices for period 1960—1990:

Site 1394, variable Precipitation: Site 1394, variable Precipitation:
Mean Max

@ Distributions from 100
simulations of 1960-1990
period, with observed statistics

6
I
50 100 150 200 250 300

E £ ,
L 1 superimposed
s | @ Coloured bands show range,
S G— S — median and quartiles of
24 e 8w R simulated distributions
Month Month

@ Shows underestimation of mean precipitation in January & February

@ Note skewed simulation distribution of monthly maxima — typical for
precipitation (and realistic according to observations)
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Assessing stochastic models
0000

Informal approaches

Another example: northern Iberia temperature

Annual means for period 1960—1990:

VALUE stations, annual mean temperature 1960-1990 o NB uncerta/nty /n observat{ons due
fo missing data — uncertainty
envelope produced using multiple
imputation in Rglimclim

145

®
125 135
L

T T T T
1960 1965 1970 1975 1980 1985 1990

== @ 39 imputations used for 95%
Histogram of PIT q g
3= uncertainty interval on
s observations
£ R — @ Only 31 annual values = coarse
o | ‘ ‘ ‘ \ w resolution chosen for PIT
0.0 0.2 0.4 0.6 0.8 1.0 )
P histogram

@ WG here fails to capture trend (no atmospheric predictors) — does this

matter? (is this aspect important?) m
&

Richard Chandler (r.chandler@ucl.ac.uk) Stochastic weather generators Third VALUE training workshop 72/85



Assessing stochastic models
0000®

Informal approaches

Distribution comparisons: quantile-quantile plots

@ Further option to assess overall distribution:
o Compute selected quantiles of observations
o Compute corresponding quantiles of pooled distribution from all simulations
o Plot against each other — should be roughly equal
@ Quantile estimates are biased near 0 and 1, especially with small
samples in observations = avoid extreme quantiles here
@ Can use to assess agreement in, e.g., overall distribution of annual
maxima throughout simulation period
o Example in practical session
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Extremes
°

Motivation

Assessing extremes — motivation

@ Many applications support decisions with implications over long periods
e.g.
Flood defences : design lifetime 30-50 years
Investment in energy infrastructure : returns over 10—20 year periods
Agricultural development : adaptation strategies with 5-20 year horizons
Safety of nuclear waste repositories : silly time scales
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Extremes
°

Motivation

Assessing extremes — motivation

@ Many applications support decisions with implications over long periods
e.g.
Flood defences : design lifetime 30-50 years
Investment in energy infrastructure : returns over 10—20 year periods
Agricultural development : adaptation strategies with 5-20 year horizons
Safety of nuclear waste repositories : silly time scales

@ Risk-based approach: plan for specified chance of coping with worst
scenario in decision horizon

o E.g. flood defences: 10% chance of failure in 50 years (say)
@ Leads to consideration of very rare events:
o E.g. ~1in 500 year’ event in flood defence example
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Extremes
°

Motivation

Assessing extremes — motivation

@ Many applications support decisions with implications over long periods
e.g.
Flood defences : design lifetime 30-50 years
Investment in energy infrastructure : returns over 10—20 year periods
Agricultural development : adaptation strategies with 5-20 year horizons
Safety of nuclear waste repositories : silly time scales
@ Risk-based approach: plan for specified chance of coping with worst
scenario in decision horizon
o E.g. flood defences: 10% chance of failure in 50 years (say)
@ Leads to consideration of very rare events:
o E.g. ~1in 500 year’ event in flood defence example

@ Compare with ‘extremes’ often studied in downscaling e.g. 95th
percentile of daily distribution (‘1 in 20 day’)
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Extremes
€000

Extreme value theory

Extreme value theory

How to assess credibility of rare events in weather generator simulations?

@ Possible approach: compare simulated and observed distributions of
(e.g.) annual maxima
o Problem: want (e.g.) 99th percentile of distribution of annual maximum,
have (say) 30-year record = 30 observations
@ Need principled basis for heroic extrapolation!

@ Extreme value theory provides such a basis — analogous to Central Limit
Theorem for means
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Extremes
0@00

Extreme value theory

Extreme Value Theory in one slide

Key result (paraphrase)
In almost all situations of practical interest, the maximum of a large collection
of independent, identically distributed random variables has approximately a
Generalised Extreme Value (GEV) distribution

@ Parameters of distribution: shape &, scale o, location u
@ Result also holds for dependent sequences

@ Can also argue that it should hold for, e.g., annual maxima even though
variables are not identically distributed (Chandler and Scott, 2011, §6.4)

@ Hence common to fit GEV distributions to annual maxima (mximum
likelihood preferred) and use fitted distributions for extrapolation

@ GEV result underpins all mathematically justified alternative methods e.g.
peaks-over-threshold, point process likelihood — see Coles (2001) for

more details
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Extremes
00@0

Extreme value theory

Implication of EV theory

Recall the question ...
How to assess credibility of rare events in weather generator simulations?

... and the previously suggested answer:

Compare simulated and observed distributions of (e.g.) annual maxima

@ Extreme Value Theory provides defensible alternative: replace observed
distribution with GEV distribution fitted to observed maxima
o Need to account for uncertainties in GEV-based extrapolation — maximum
likelihood estimation enables this
o Uncertainties usually shown on return level plot: shows estimate of values
exceeded with frequencies from once per year to once every N years
o Observations added to plot as check on GEV fit

@ Possibility for weather generator assessment: add simulated maxima to
‘observed’ return level plot (example in practical session)
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Extremes
oooe

Extreme value theory

Example of return level plot

Return Level Plot

Return Level

1e-01 1e+00 le+01 1e+02 1e+03

Return Period

Return level plot for annual maximum sea levels at Port
Pirie, South Australia, 1923-1987 (data from i smev

library in R, originally in Coles (2001))
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Extremes
°

The GEV shape parameter

The GEV shape parameter

@ Shape parameter & plays crucial role in behaviour of extremes:
e & < 0: finite upper limit
e & = 0: infinite upper limit but light tail
e & > 0: infinite upper limit and heavy tail (potential for ‘black swans’)
@ If using weather generator for extremes, minimal requirement is that
associated value of & is roughly correct
@ Fact: for independent sequences, underlying distribution determines
value of € e.g.
Normal distributions :leadto & =0
Gamma distributions : leadto § =0
Pareto distributions : leadto & > 0
@ But: tail behaviour can be different in dependent sequences specified via
conditional distributions (see Exercise 3)
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Multi-site performance
°

Options available

Assessment of multi-site performance

@ If spatial aspects are important then these must be assessed

@ Systematic variation: use single-site measures at selected sites
e May want to map single-site measures or plot against (e.g.) site altitude —
but would need to reduce previous graphs to single measure e.g. mean
bias over all simulations
o NB also mapping involves interpolation — beware artefacts!
@ ‘Residual inter-site dependence’ now better characterised via indices of
joint distributions at sets of sites e.g.
o Correlations / variograms of (standardised?) anomalies — similar
comments apply
o Probabilities of simultaneous threshold exceedances e.g. Yan et al. (2006)
@ Alternative approach: work with spatially aggregated daily series

o Easier to apply & tests for realistic spatial coherence in WG output
o More user-relevant in some applications e.g. hydrological modelling
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Summary
°

Summary of Part 3

@ Many judgements can be made without assessing WG performance
(what was it designed for, what data are required, ...)

@ Different WGs appropriate depending on key features of interest in
application

@ Aim of performance assessment: determine whether WG has potential to
provide suitable inputs to (e.g.) impacts model

@ VALUE decision tree (Phenomena — Aspects — Indices — Measures)
helps to structure assessment exercise

@ Question for stochastic WGs framed as ‘Do observations look like
realisation from WG?’

@ Need independent test data / block cross-validation for credible
assessments

@ Clear role for informal / graphical assessments of performance: not ‘is it
right?’ but ‘is it good enough?’ &
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