Stochastic weather generators
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Case study: the Thames

Case study: the Thames

Stations used for calibration * Kennet grid nodes

@ Largest catchment in UK

(~ 10000km2) , ‘;;?/
@ Modellers wanted hourly ;;
sequences, 8 variables, d‘ﬁu

1km? resolution
throughout catchment

=

o Negotiated settlement: daily sequences, 5 x 5km? resolution, Kennet
subcatchment (186 grid nodes)

@ Data on (most) variables nominally available from 157 stations, 1970

onwards KT
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The HydEF project

Motivating example

@ HydEF project
(http://www.bgs.ac.uk/changingwatercycle/hydef.html) looking
at hydro(geo)logical impacts of climate change in UK

@ Detailed hydro(geo)logical models require high-resolution weather inputs,
consistent with changing large-scale synoptic conditions as obtained e.g.
from reanalysis products or GCMs

E.g. variables needed by JULES:

Rainfall rate Air pressure Snowfall rate Air temperature
Downward Downward
Wind speed  Specific humidity short-wave long-wave
radiation radiation
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Case study: the Thames

Data availability (I)

@ Hourly data obtained from British Atmospheric Data Centre (BADC),
MIDAS Met Office dataset

@ Available variables: rainfall, snow, air pressure, air temperature, wind
speed, downward SW radiation

@ Missing variables: specific humidity and downward LW radiation

o Can be derived from other variables using standard procedures from
literature

e BUT ...
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Case study: the Thames Requirements

Data availability (ll) Motivating example: summary of requirements

Numbers of stations with data (out of 157)

@ Need to generate daily time series for ...

Rainfall Pressure Temperature Wind speed SWR @ Several variables simultaneously, with different distributions and
71 52 140 135 22 preserving inter-variable relationships ...
Proporiansof sl obsersatons - Presurs @ at many locations simultaneously,

preserving inter-site relationships ...

@ ... including locations for which no
observations are available ...

@ ... and substantial amounts of

—_— W @ Many stations have short / e )
— =—grew | [*  incomplete/ patchy records missing qata at Iocat|'ons where
—i S —s— observations are available ...
Ef p— E— @ including a realistic climate change
= e —— — ——— - i
§ | e - R — signal.
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Requirements

Structure of session

Weather generators: what and why?
Weather generators vs RCMs

‘Classical’ generators Part 1: Introduction to weather generators
Other types of weather generator

Incorporating climate change information
”

Issues in multisite generation

Classes of multisite generator

Software packages available, including Rglimclim

°
°
@ Data requirements
)
°

The Thames revisited

A
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Weather generators: what and why? Weather generators: what and why?
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Definition Rationale

What is a weather generator? Why time series?

IPCC summary @ Interest in assessing response of complex systems to climate change
(www.ipcc-data.org/guidelines/pages/weather_generators.html) @ System response depends on how weather effects are aggregated:
A stochastic weather generator (WG) produces synthetic time se- e UK flooding, Boscastle, August 2004: localised
ries of weather data of unlimited length for a location based on the intense rainfall in one day (Met Office, 2005)
statistical characteristics of observed weather at that location. o UK flooding, winter 2000-2001: two-month
. ) . . . rainfall totals exceeding 200-year return period
(remainder of IPCC summary strictly correct but potentially misleading — and (Finch et al., 2004)
no mention of multi-site generation) o European heatwave, 2003: excess deaths
N ] - associated with extended periods of extreme
@ Additional requirement here: ability to capture climate change signal heat without night-time cooling
using information from GCMs (http://en.wikipedia.org/wiki/2003_ R . | e
o NB tacit assumption that GCMs do not provide useful information at European_heat_wave) Boscastle, August 16th 2003
resolution required by users (classic example: Abourgila 1992) o Crop growth sensitive to quantity and timing of
o ‘Perfect Prognosis’ approach to downscaling: GCM outputs taken as precipitation (Kniveton et al., 2009)
correct (possibly after processing) m o etc. etc. m
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Weather generators: what and why?
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WGs vs RCMs

Weather generators: what and why?
oe

Rationale

Weather generators versus RCMs

Generic requirements

@ Aim to reproduce some subset of time series features (“aspects” in
VALUE vocabulary)

@ Subset depends on context

WGs RCMs

@ Empirically based @ Physically based
“ @ Stochastic in nature @ Deterministic in nature
Marginal aspects : mean, variance, frequency of threshold . . .
@ Cheap to simulate @ Expensive to simulate
exceedances, return levels, ...
. . @ Require calibration (fitting) on @ No user calibration required
Temporal aspects : trends, seasonality, autocorrelation, spell lengths, q . ( 9 g
case-by-case basis
. . . L . . . @ Can choose method and tune to @ Limited options for
Spatial aspects : systematic regional variation, residual inter-site meet application requirements application-specific tunin
dependence, simultaneous threshold exceedances, ... PP q PP P 9
. : . . - @ Rely on empirical relationships @ Rely on laws of physics
Inter-variable relationships : correlations, frequency of joint events, ... y. . .p P y. o Py
b persisting into future persisting into future
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The ‘classical’ generator
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The ‘classical’ generator
.

Markov chains

Markov models for precipitation

WGEN

The ‘classical’ weather generator

o First ‘weather generator’: WGEN based on Richardson (1981) for daily
weather sequences

The basic Markov precipitation model

o Let Y; =1 if day tis ‘wet’, 0 otherwise

@ Built on earlier models for daily precipitation going back to Gabriel and
Neumann (1962)

@ Model precipitation first, then other variables conditional on precipitation
— because precipitation has challenging statistical properties

@ Markov assumption:

P(Ye=y|Yi-1,Yi—2,...) = P(Yy =y|Yi_1) for y = 0,1
@ Leads to 2-state Markov chain for precipitation occurrence
@ Characterised by transition probabilities:

1 =P(Yi=1|Yi—1 =1), o1 = P(Y; =1|Yi—1 =0)

@ (Some) other variables conditioned on precipitation status e.g. separate ° V\./et-.day. LB a§sumed independent and to follow some
distribution (exponential, gamma, ...)

distributions for wet and dry days, cosine functions fitted to parameters for y

seasonality

Third VALUE training workshop 14 /85

@ Markov chain for precipitation occurrence, gamma distribution for
intensity, separate parameters for each month of the year

Richard Chandler (r.chandler@ucl.ac.uk) Stochastic weather generators Third VALUE training workshop 13/85 Richard Chandler (r.chandler@ucl.ac.uk) Stochastic weather generators

The ‘classical’ generator The ‘classical’ generator
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Markov chains Deficiencies

Properties of Markov chains Deficiencies of basic WG

From IPCC guidelines:

@ Temporal dependence characterised via transition probabilities:

Richard Chandler (r.chandler@ucl.ac.uk)

o If Ty ~ 1 then one wet day will very likely follow another
o If mps =~ 0 then one dry day will very likely follow another
e etc.
@ 2-state Markov chain has equilibrium distribution: long-run proportion of

wet days is
To1

1+ — Ty
@ So transition probabilities also characterise marginal aspects of
precipitation occurrence

P(Yi=1)=

@ Higher-order chains give more flexibility e.g. specifying
P(Ye=1|Yi1 = y1,Yi2 = o).

@ See Exercise 1. m
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One criticism of the Richardson-type WG is its failure to describe ad-
equately the length of dry and wet series (i.e. persistent events such as
drought and prolonged rainfall). These can be very important in some ap-
plications (e.g. agricultural impacts).

Other common problems:
@ Tendency to underestimate variability of seasonal means / totals
(“overdispersion” — see, e.g., Katz and Parlange 1998).
@ Underestimation of high return levels e.g. 100-year daily maxima
(independent exponential / gamma intensity distributions do not yield
‘heavy tailed’ extreme distributions observed in daily rainfall data e.g.

Katz et al. 2002) m
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The ‘classical’ generator
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Other weather generator types
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Deficiencies

Summary of alternative approaches

Approaches to remedying deficiencies in basic WG structure

Other approaches to weather generation

Many suggestions in literature:
y suggest n u @ Approaches based on spell lengths

@ Higher-order Markov chains to improve wet and dry spell performance
@ Heavy-tailed intensity distributions to improve extremal behaviour
@ Introduce latent classes with separate parameter sets, to increase

@ Resampling methods
@ Generalised linear models

variability in seasonal means @ Subdaily weather generators
@ Nonparametric modelling to avoid specific distributional assumptions
@ Etc. etc. See also:
VALUE inventory and review of statistical downscaling
methods — summary at http://convection.zmaw.de/
fileadmin/user_upload/convection/Convection/WG_
What about correlation Presentations/2014.01.29-30/SDS_COST_Inventory_
between successive days’ AFischer.pdf
precipitation intensities?
| cyclL| | cyclL|
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Other weather generator types Other weather generator types
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Generators based on spell lengths Resampling methods

Generators based on spell lengths Resampling methods

@ Idea: for each day of simulation, choose values at random from

@ Idea: resolve problems with spell-length distributions by placing these at observations on days ‘similar to” current day

heart of generator: @ ‘Similarity’ could be, e.g.:
o Start by generating wet and dry spell lengths o All values on same day of year (seasonality)
e Then proceed similarly to ‘classic’ generator o Values from days with similar previous days’ weather (autocorrelation)

. . S o Values from days with similar large-scale synoptic conditions
@ Approach common in agricultural applications where spell lengths are

important
@ LARS-WG is best-known example:

o Uses ‘semi-empirical’ spell length distributions fitted separately for each
month

Nonparametric approach makes minimal assumptions
Inter-variable dependencies automatically preserved
Cannot generate values outside range of those previously observed

Cannot consider too many factors in determining similarity (‘curse of
@ See Semenov et al. (1998) for summary and comparison with WGEN dimensionality’)

@ More details: Buishand and Brandsma (2001)
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Other weather generator types Other weather generator types
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Generalised linear models Generalised linear models

Generalised linear models (GLMs) GLM for precipitation occurrence

@ Common to use logistic regression model:

P _
" <1 —tp > =xip=mtC,say = p=[1+exp(—my)]"
@ Idea: embed ‘classical’ generator within wider class of models !

@ Grunwald and Jones (2000) showed that Markov-based models are where:
special cases of Generalised Linear Models (GLMs) o p; is probability of precipitation on day
o GLMs first applied to daily rainfall by Coe and Stern (1982). @ X; is vector of covariates (predictors)
o Cornerstone of modern statistical practice in all application areas o [ is coefficient vector

—1

o E.g.setx; = (1Y), B=(BoB1), then p; = [1 4 e (PotBr¥i1)]
e When Y, 1 =0,p=[1+ e’ﬁﬂ " _this is Tg; in Markov formulation
e When Y, i =1,p=[1+ e*(B°+ﬁ1)] " this is 11
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Other weather generator types
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Other weather generator types
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Generalised linear models Generalised linear models

GLMs for other variables Interactions

@ Generic formulation of arbitrary (now generic) variable Y;

@ With two covariates xiy, Xo, suppose 1My = Bo -+ B1 X1 + BaXor.
e {Y;} considered drawn from common family of distributions (normal,

@ Suppose also that x, modulates effect of x;: B1 = Yo + V1 X2;. Then

gamma, Poisson, Bernoulli, .. .)

e Conditional on covariate vector x;, expected value of Y; is u; = E ( Y;|x;)

o i related to linear predictor 1; = x;3 via relationship g(u) = 1, for link Nt = Po+(Yo+vixee)xie+ Paxer
function g(-). = Po+Yoxi:+ BaXor + V1 X1Xo1.

Extends linear regression model (normal distributions, g(u) = u).
E.g. use gamma GLM with log link for precipitation intensity
o Can model temporal dependence in intensity by including Y;—1 in X; —

@ Easily handled in usual framework: just define extra covariate xq;xz;.

@ Higher-order interactions can be handled similarly.

maybe resolve overdispersion problem? Consequence for weather generators
@ Unified approach for all variables — differences only in choice of @ Seasonal variation in parameters is just an
distribution interaction between seasonal and other covariates
@ Coefficients estimated using maximum likelihood @ Eliminates need for separate fitting to different
@ Assumptions can be checked m months / seasons m
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Other weather generator types
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Incorporating climate change
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Subdaily generators Background

Subdaily generators Incorporating climate change information

@ Subdaily precipitation structure too complex for many of previous model
types @ Weather generation in climate change context requires ability to connect

WG parameters / outputs with large-scale atmospheric structure

@ Various heuristic schemes e.g. additive / multiplicative change factors
based directly on GCM changes in variables of interest
o Inappropriate for (e.g.) precipitation because change factors do not affect
wet / dry properties
e Some more considered applications apply change factors to relevant model
parameters e.g. (Kilsby et al., 2007) — approach used in UKCPQ9 national
climate projections for UK

@ Subdaily models attempt to represent underlying mechanisms in more or
less simplified form
@ Two broad classes of subdaily precipitation generator:
o Poisson cluster models — represent precipitation as superposition of
‘cells’ clustered within ‘storms’
o Multiscaling models — exploit systematic variation of precipitation
summary statistics with temporal resolution

Up-to-date review in Chandler et al. (2014). (http://ukclimateprojections.metoffice.gov.uk/).
@ Limited work on subdaily generation for other variables @ More formally: integrate indices of large-scale structure formally into
@ Subdaily generation not considered further here. model specification
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Incorporating climate change Incorporating climate change
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Predictor selection Synoptic indices

Predictor selection Synoptic indices

Requirements for indices of large-scale structure
@ Indices must have genuine relationship with local . e i
variable(s) of interest @ One possibility: construct indices of large-scale structure and incorporate

o Relationship must be robust to changes in climate directly into weather generator model

o Relationship must capture climate change signal @ Examples of indices:
@ Indices must be well simulated by GCMs e Teleconnection indices: ENSO, NAQ, ...
o Means of relevant fields e.g. MSLP, temperature, ... over relevant area
o Principal modes of relevant fields (e.g. EOFs) — but NB can be hard to
align modes from GCMs with those from observations

@ See also IPCC guidelines at

www.1ipcc-data.org/guidelines/dgm_no2_v1_09_2004.pdf (but
NB review of weather generators now out-of-date) @ Typically need measures of moisture availability where precipitation is

@ Requirements unverifiable(!) Pragmatic response: concerned (Charles et al., 1999b)

o Focus on variables and scales at which GCMs might reflect reality; and @ Relevant indices may vary with region and season
acknowledge difficulty (Smith, 2002).

o Try to incorporate known mechanisms into WG structure m m
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Incorporating climate change Incorporating climate change
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Synoptic indices Weather classification

Incorporating synoptic indices into WG models Weather classification

@ Alternative to direct use of indices: classify days into ‘weather types’
based on circulation patterns
o Examples: Jenkinson-Collinson, GroBwetterlagen, etc.
o Classification may also depend on predictand(s) (see practical session)
@ ‘Classical’ WG models: difficult, mostly done by parameter perturbation

or weather classification (next slide) inEgiporahugivestheinty pEsNCINOs

. . - . . @ Most WG models: fit separate parameters for each type
@ Resampling methods: incorporate indices in metric used to select . > e

candidate days for resampling @ Resampling methods: resample from days with same type
o GLMs: incorporate directly as additional covariates o GLMs: define ‘dummy’ 0/ 1 covariates to select type for each day
o Interactions account for regional / seasonal variation in effect size o With G types (groups), need G — 1 dummy covariates

o Coefficients are deviations from remaining ‘reference type’

@ NB can be parameter-intensive if many types are used

V.

@ Useful resource for European applications: COST733 intercomparison

m project (http://cost733.met.no/) m
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Summary of Part 1
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Summary of Part 1

@ Weather generators are stochastic models to produce (usually daily) time
series of one or more variables

@ Precipitation is fundamental due to modelling challenges

@ ‘Classical’ structure based on Markov chain for precipitation occurrence; Part 2: Multisite generators
performs poorly with respect to spell lengths, interannual variability and
extremes

@ Other suggestions designed to address deficiencies directly or to make
minimal assumptions about distributions etc.

@ GLMs encompass ‘classical’ structures within flexible framework that
permits many extensions to basic model structure (including ease of
incorporating large-scale information)

@ In climate change work, predictor selection requires care
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Key issues
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The need for multisite generators Regional variation and residual dependence

Multisite generation ‘Spatial dependence’: a key distinction

@ Methods in Part 1 primarily developed for series at single site i i — . . .
@ Some applications need simultaneous time series at multiple sites Systematic regional variation: Residual inter-site dependence:

o E.g. hydrological studies of large catchments =

o Development of national energy infrastructure to respond to local variation ey
in energy demand / risk of damage to generators etc.

o Strategies for health provision or wildfire management in heatwaves

@ In all examples above, spatial organisation of weather is important:

o Do all sites experience similar weather simultaneously?
o Or are only one or two sites affected at any one time?

. From UK Met Office ) From www.weatheronline.co.uk
@ May also need to generate at ungauged sites (cf Thames example)
Additional benefit of multisite analysis: @ Systematic regional (spatial) variation = ‘climatology’
Pooling data across sites can increase modelling @ Residual inter-site dependence = ‘spatial organisation of anomalies’
precision (“space-for-time” / “borrowing strength”) m m
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Regional variation and residual dependence Multisite extensions of classical generator

Implications of distinction Multisite extensions of classical generators

@ Most multisite extensions of classical generator follow Wilks (1998)
o Fit standard generator at each location separately

@ A truly multisite weather generator must address both aspects of spatial o Systematic variation captured by different parameters at each site (so
structure cannot use directly at ungauged locations)

@ Relatively few truly multisite WGs widely available . .. @ Residual inter-site dependence captured by using correlated random

e ... and very few multisite, multivariate WGs numbers in simulations

o Exploit ease of generating correlated Gaussian random numbers

o Occurrence: use correlations for latent Gaussian variables (next slide)

o Intensity: work with intensities transformed to Gaussianity, then
back-transform

Focus inevitably on precipitation since few multisite WGs available for @ Correlations estimated by matching to observed correlations

other variables

Aim here: review most promising options that are truly multisite

o Deliberately exclude those that do not address residual inter-site
dependence

o Occurrence: ‘trial and error’ simulation-based scheme — unsuitable for
large numbers of sites
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Model classes
L]

Latent Gaussian variables Other extensions of single-site models

Latent Gaussian variables Other extensions of single-site models

Convenient way to generate correlated vector Y = (Y4,..., Ys) of binary (0/1) o Resampling methods: conceptually identical to single-site case
variables: o Automatically reproduces distributions, dependence between sites &
@ Generate vector Z = (Z;,...,Zs)’ of correlated Gaussian variables, with variables etc.

Cannot resample at ungauged locations
Ze~N(0,1)fors=1,...,8. ° ple & Hngato o -
@ GLMs: add extra covariates to represent systematic regional variation,

@ For each s, set Y = 1if Zs > Ag, Y5 = 0 otherwise then use e.g. correlation models for residual dependence (Chandler and
@ Choose thresholds A1, ..., \s to obtain desired probabilities of Wheater, 2002; Yang et al., 2005b).
occurrence at each site o Extra covariates: altitude, functions of geographical coordinates etc.

o Interactions allow regional variation of other model parameters

o Regional covariates and correlation functions allow simulation at ungauged
locations

o Models fitted under ‘working’ assumption of independence, with
subsequent adjustments to uncertainty assessments (see practical

@ Choose correlations among (Z;) to obtain desired dependence in ( Ys)
o ‘Standard’ approach in WG literature: match to observed correlations
o Easier approach: match to joint occurrence probabilities (enables direct
numerical calibration, see Ambrosino et al. 2014)

o Difficulty: estimated correlations may not be mutually compatible session)
o Solution: use spatial correlation model fitted to estimates m m
Richard Chandler (r.chandler@ucl.ac.uk) Stochastic weather generators Third VALUE training workshop 37/85 Richard Chandler (r.chandler@ucl.ac.uk) Stochastic weather generators Third VALUE training workshop 38/85

Model classes
00800

Model classes
08000

Other extensions of single-site models Other extensions of single-site models

Additional multisite class: transformed Gaussian variables Hidden Markov Models

o Idea: let X; be vector of correlated Gaussian variables on day t, and .
o o Idea (Charles et al., 1999a):

generate vector Y; of precipitation values as extension of weather typing Q
@ Sequence of weather states

vo_ X it Xy >0 : .
st — 0 otherwise S1,Sy,. .. associated both with @ @ @ @
typical patterns of precipitation

Similar to latent Gaussian approach for occurrence, but generates occurrence Y1, Yz, ... and
occurrence and intensity simultaneously large-scale circulation patterns

X1, Xo,. ..
@ State sequence is Markov chain with transition probabilities determined

by large-scale circulation

Parameter [ controls shape of intensity distribution
@ Mean vector and covariance matrix of X; simultaneously control

occurrence probabilities, mean intensity and inter-site dependence. o . ) )
@ Precipitation usually assumed conditionally independent given state

Key reference: Stehlik and Bardossy (2002). ) : )
) ) ] o Assumption probably reasonable for large study areas with few sites
Caveat: in reality, different processes control occurrence and intensity o Assumption relaxed by Ailliot et al. (2009).
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Other extensions of single-site models

Other extensions of single-site models

Small study areas

Example of HMM states and precip patterns

™ @ Small study areas often have i m ER
§ very high inter-site dependence ] [l w m oo o o [I
- @ Occurrence models based on '
latent Gaussian correlations can = '
struggle to capture this . .. m
@ ... but correlation is not the only e
Y measure of dependence “
ﬁ From Yang et al. (2005b)
% @ Alternative (Yang et al., 2005b): model distribution of # of wet sites
= o Beta-binomial is flexible and interpretable family of distributions for this
purpose
(Joint work with Bryson Bates and Steve Charles) o Allows tendency for most sites to be either wet or dry
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Missing data

Dangers of interpolation

Data requirements for multisite weather generators

Interpolation: what’s the problem?

@ Weather generators require calibration to observed data . ..

@ ... but some or all observations are often missing:
o Individual observations / blocks missing from otherwise complete record
o Different record lengths (short records have missing ends)

“Interpolation” here means using ‘best’ estimates of missing values J
o Absence of recording stations at required locations (e.g. subcatchment
centres, nodes of regular grid)

@ Possible solutions:

@ Interpolated values are smoothed => variability reduced (affects, e.g.,
extremes)
o Work just with data available if WG calibration scheme allows it

o Interpolation: estimate missing values (e.g. kriging, inverse distance

@ Interpolation introduces artificial inhomogeneities e.g. due to different
weighting, splines etc.)

distances from nearest neighbouring gauges ...
@ and it gives false impression of reduced uncertainty
Strong recommendation:

NEVER, on any account, work with interpolated
precipitation data!!!
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Dangers of interpolation

Dangers of interpolation

Results of simulation experiment

Example: simulation experiment

o Simulate 30-year sequences at Hopstamison o0 Distributions of annual maxima, and pooled return level estimates
12 locations (blue triangles):

» . A e
° Multl-Slte GLM L!SEd: Identlcal W W W W . 7S\mu\anonexpenmem distributions of annual maxima in 30-year period Return Estimate (mm)
structure at all sites - < i 8 hanodes period Original Gridded
o Sequences ‘typical’ of SE 1
10 yr 44.0 38.0
Englgnd . 5 : H : . 2 50 yr 57.8 49.4
° Spatlall scale: ~ 75% of days “ 100 yr 63.9 54.4
have sites all wet or all dry, [Vomge 0 canode .
wet-day inter-site correlations N Actual return periods for gridded
N. 9-6‘03- . . . . BREEEAERAERE estimates: 5, 19 and 34 years
@ Use kriging to create gridded daily dataset from simulatons ™
v
@ Regular grid: 12 nodes (red squares)
@ Compare annual maxima / return levels for original & gridded data @ Maxima for gridded data are smaller and less variable
m @ Gridding reduces return level estimates by ~ 15% m
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Software
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Implications for calibration Freely-available packages
Handling missing data Software packages for weather generation
Name & URL Notes
LARS-WG Single-site, multivariate. Based on
(www.rothamsted.ac.uk/mas-models/larswg.php) wet and dry spell length distributions.
@ When fitting WG models to sites with missing data, ideally choose SDSM Single-site, multivariate. Based on
approach that does not require complete records (co-public.lboro.ac.uk/cocnd/SDSM/ ‘classical’ WG formulation.
. . i . WeaGETS
@ Multisite model classes for which this is straightforward: « Single-site, multivariate, based on

(www.mathworks.co.uk/matlabcentral/fileexchange/ . X
‘classical’ WG formulation.

o Multisite extensions of ‘classical’ models (calibration done site-by-site) 29136-stochastic-weather-generator--weagets-)

o GLMs MulGETS Multi-site, multivariate. Extension of
o Models based on transformed Gaussian fields (www.mathworks.co.uk/matlabcentral/fileexchange/ WeaGETS, based on Wilks (1998) ap-
47537-multi-site-stochstic-weather-generator--mulgetspjoach. o .
@ For simulation at ungauged locations: better to interpolate WG UKCPO9 Single-site, multivariate, ‘classical
arameters than data values (ukclimateprojections.metoffice.gov.uk/22540) WG formulation but with Poisson clus-
p proj : ~gov- ter model for precipitation component.
o GLM does this automatically via interactions with ‘spatial’ covariates Rglimclim o Multi-site, multivariate, based on

(www.homepages.ucl.ac.uk/~ucakarc/work/glimclim. ) GLMs

html :
NHMM Multi-site, univariate, based on hidden

m (iamrandom. com/nhmm-package) Markov models. m
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www.rothamsted.ac.uk/mas-models/larswg.php
co-public.lboro.ac.uk/cocwd/SDSM/
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iamrandom.com/nhmm-package

Software Software
©0000 00000

Rglimclim Rglimelim

Rglimclim Modelling capability (1)

@ Distributions currently available:

@ Software package for developing multivariate, multisite daily weather o Normal (not very useful)
generators using GLMs o Heteroscedastic normal (suitable for, e.g., temperature)
o Gamma (suitable for, e.g., wind speed, precipitation intensity)

@ Runs under R (http://www.R-project.org) on all platforms o Bernoulli (suitable for, e.g., precipitation occurrence)

@ Based on earlier G1imclim package — Fortran 77(!), multisite but @ Covariate classes:

univariate weather generator o ‘Site effects’: flexible representation of systematic regional variation
@ Adds graphical facilities and diagnostics as well as multivariate modelling (‘climatology’)

/ simulation capability o Seasonality: various options available

. ] o Autocorrelation: functions of lagged values
@ Flexible model structures allow development based on physical o Inter-variable dependence: functions of simultaneous and lagged values of
understanding rather than statistical convenience other variables

e Allows imputation of missing values (see later) o ‘External influences e.g. indices of large-scale climate
o Interactions: allow effects of one variable to be modulated by others
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Software
00800

Software
00000

Rglimclim

Rglimclim

Modelling capability (II) Model fitting and comparison

@ Models fitted using maximum likelihood under (incorrect) assumption of

@ Several structures available for representing residual inter-site independence between sites
dependence to ensure spatial coherence e Standard IWLS fitting algorithm, augmented to allow estimation of
@ Most based on correlation structures for standardised / Anscombe parameters in nonlinear covariate transformations
residuals (defined so as to have “almost Gaussian” distribution) o Computationally fast = feasible to fit & compare many different models on

large datasets

o Lose some estimation efficiency compared with fully-specified spatial
model — unimportant for large datasets

o Thresholding of latent Gaussian field with spatial correlation structure — e Usual standard errors adjusted for inter-site dependence (‘sandwich
suitable for large regions covariance estimation’)

o Beta-binomial representation for distribution of ‘wet area’ — suitable for . S . . . .
. ) N : @ Model comparison using likelihood ratio tests adjusted for inter-site
small catchments where inter-site dependence is uniformly high

o Model based on simple binary weather state process (original Gl1imclim dependence (methodology of Chandler & Bate, Biometrika, 2007)
model — other options preferable) @ Extensive summary and diagnostic information to identify lack-of-fit and

m guide model-building process m
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@ Additional options available for Bernoulli distributions — needed for
realistic generation of spatial rainfall occurrence:


http://www.R-project.org

Software The Thames revisited
0000e ®0

Rglimclim Rglimclim model for Thames

Simulation and imputation Example: the Thames again

iables modelled and distributions used
. . . . \EEL] Distrib
@ Simulated sequences can be either unconstrained (conventional WG) or avie : 4 ———— : : :
conditioned on all available observations: Air pressure Normal distribution with changing mean and variance
o Allows for multiple imputation of missing observations = quantifies Logistic regression for occurrence (wet / dry), gamma
uncertainty in historical properties Rainfall distribution with changing mean & constant coefficient of
o Can also be used to ‘interpolate’ to regular grid — alternative to gridded variation (CV) for wet-day amounts
datasets Air temperature Normal distribution with changing mean and variance
@ Summary and plot methods check ability to reproduce wide variety of Wind speed Gamma distribution with changing mean & constant CV
properties Wet bulb temperature  Normal distribution with changing mean and variance
@ Examples in practical sessions Short wave radiation =~ Gamma distribution with changing mean & constant CV
Cloud cover Gamma distribution with changing mean & constant CV
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The Thames revisited
oce

Summary of Part 2
L]

Rglimclim model for Thames

Thames: structure of multivariate model Summary of Part 2

Monthly indices of large-scale Local variables in weather
structure generator . S . . L
Means are for region 50°-60°N, 0°-10°W : @ Key issue is distinction between systematic regional variation and
Air pressure . . .
/ ¥ residual inter-site dependence
Mean sea level pressure (MSLP S . T . . e
2 ( ) Precipitation @ Multi-site methods in literature tend to be designed with specific types of
Mean 2m air temperature 4 problem in mind, e.g.:
Air t t . . . .
Mean relative humidity at " emi’em ure o Hidden Markov Model (in usual form) suitable for widely separated
~1000hPa Wind speed locations in Iargg regions . .
¥ o In small areas, distribution of # of wet sites may better characterise
Atmospheric river frequency . T
(moisture content >300 kg m s) Wet bulb temperature dependence in precipitation occurrence
@ Data availability may constrain types of multi-site WG that are appropriate
Integrated vapour transport during Short wave radiation . . .
atmospheric river events . o Beware interpolation / gridded datasets!
Cloud cover | @ Limited software available for multi-site, multivariate weather generation

Richard Chandler (r.chandler@ucl.ac.uk) Stochastic weather generators Third VALUE training workshop 55/85 Richard Chandler (r.chandler@ucl.ac.uk) Stochastic weather generators Third VALUE training workshop 56/ 85



Structure of session

Part 3: Assessing weather generator performance o Motivation

@ Assessing stochastic models
@ Extremes
@ Multisite performance
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What to assess? What to assess?
. (e}

Goals of an assessment Key features

Assessing weather generator performance What are ‘key features of interest’?

A user wants to drive an impacts model with a weather generator.

@ Relevant features / properties are context-dependent
@ From user perspective, ultimate test is realism of impacts model output
o But this requires user to build WG & run impacts model — may be

v
fime-consuming
- o Also, deficiencies may be due to impacts model rather than WG

@ Ease of use & level of technical sophistication required

@ How to choose from wide range of generators available?
@ How to determine whether a given generator is fit for purpose?

@ Applicability of key assumptions in user’s context Aim therefore:

@ Ability to calibrate using available data Provide information that enables user to judge whether WG has
@ Credibility of mechanism for incorporating climate change effects potential to provide suitable inputs to, e.g., impacts model
(in user’s context)

@ Ability to reproduce key features of interest in past observations
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What to assess?
®0

What to assess?
oe

The VALUE framework

The VALUE framework

Key features

Example: distributed hydrological modelling

Decision tree for validating downscaling methods

Identify phenomena of interest (precipitation, heatwaves, weather
during growing season etc.

Identify relevant aspects of weather distribution that are relevant
(marginal, temporal, spatial, inter-variable)

@ Complex hydro(geo)logical
models convert spatial rainfall
into runoff / groundwater levels
etc.

@ Precise details depend on land
use, soil type, geology, current
soil state, river levels etc.

Identify relevant indices to quantify performance with respect to

B ) each aspect
Thanks to colleagues at British Geological Survey

© 6 © ©

Identify performance measures to assess ability of downscaling

@ But to zero-order approximation: need realistic areal average rainfall and o
method to reproduce indices

realistic rainfall at each individual location — hence focus on these

quantities to assess WG performance in this application

62/85
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Assessing stochastic models
.

What to assess?
oe

The VALUE framework Issues

Issues in the assessment of stochastic models

Application of framework to hydrological modelling example

@ Means, variances, threshold exceedances, correlations etc. often cannot
be deduced from weather generator structure — must use simulations to
estimate WG properties

Phenomena : precipitation and evapotranspiration over catchment

Aspects : marginal (distributions), temporal (spell lengths, seasonality),

spatial and intervariable . o
@ Stochastic weather generators produce random realisations = do not

Indices : e.g. mean, vanlance, proportion of dry daysl, autocorrelations, expect exact match between WG properties and observations
phase and amplitude of seasonal cycle, spatial maps of other

properties, variability of areal mean, inter-site correlations,
inter-variable correlations

@ Question is not ‘does WG output match observations?’, but ‘do
observations look like a realisation from the WG?’

Measures : e.g. bias or relative error
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Assessing stochastic models
9000

Assessing stochastic models
0@00

Example: validation of mean temperature Example: validation of mean temperature

Example: simple temperature generator Temperature example: ‘obvious’ approach?

Hypothetical example @ Fit model to observations:

o Suppose you get Bo =3, ﬁ1 =3, Bg =0.5, Bg =0.75, 6> = 1, so model is
@ Phenomenon: temperature @ Index: mean

365 2 365

. T 271 X day of year 1 27 x day of year
@ Aspects: marginal distribution @ Performance measure: ??? Y = 3+3cos [#} + 2sin {#}

@ Weather generator is 3
t2 Yio1+&
27 < day of year .| 2w x day of year

Yt = Po+Picos [yy] + Bosin [yy]

365 365 @ Figure out mean temperature for fitted model (B /(1 — B3) = 12° —

obvious?).

+P3Yi—1+€ o . . .
B?’ 6= L o NB if interested: mean seasonal cycle for this model given in equation (19)
of Yang et al. (2005a) — not at all obvious! See Exercise 2
g ~ N(0,6%) g ( )
. . . @ Compare observed and modelled means — perhaps use t-test?
@ Daily observations available 1980-2010 P P P
v
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Assessing stochastic models Assessing stochastic models
0000 000®

Example: validation of mean temperature Example: validation of mean temperature

Problems with ‘obvious’ approach Second attempt

@ Fit model to observations 1980-2000

@ Carry out many simulations of 2001-2010 period to find mean

@ Usually infeasible to derive properties of interest directly from model temperature for this period under model
specification = must use simulations

o For nonstationary weather generators, use many simulations

corresponding to same time period as observations .
) How to make comparison?
@ Same data used to fit and check model — means guaranteed to be

@ Compare with observed mean temperature

similar! o Test hypothesis Ho : tsim = Yons? (WRONG!)
o Need independent dataset for testing @ Test null hypothesis Hp : [£ (Vobs) = usim? (v'?)
e E.g. fit to data from 1980-2000, test on data from 2001-2010 o Care required with interpretation: relevant question is not ‘is tgps = tsim?’,
o More sophisticated approach: block cross-validation as in VALUE but is |tops — tsim|’ sSmall enough for WG to be useful?’
framework o Also, standard test assumptions unlikely to hold (independence etc.)
@ Some role for informal approach )
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Assessing stochastic models Assessing stochastic models
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Informal approaches Informal approaches

Informal approaches PIT and related techniques

Key question:

Does observed series ‘look like’ weather generator realisation?

@ Idea: look at distribution of selected indices across many simulations @ If many ‘replicate’ indices are computed, can produce PIT histogram —
o E.g. 100 simulations give 100 different mean temperatures to form should be flat within sampling error
simulated distribution e E.g. annual means over 50-year period
o If observations were produced by weather generator, observed index @ Alternative: for ‘similar but unreplicated’ indices, plot simulated
should be sampled from this distribution distributions overlain with observations (‘caterpillar plots’):
o Implication: pool observed index with n simulated indices, rank of o E.g. summary statistics for each month of year

observation equally likely to be 1,2,... or n+1
o Basis for Probability Integral Transform (PIT):

rank of observed index
n+1

PIT =

Richard Chandler (r.chandler@ucl.ac.uk) Stochastic weather generators Third VALUE training workshop 69 /85 Richard Chandler (r.chandler@ucl.ac.uk) Stochastic weather generators Third VALUE training workshop 70/85

Assessing stochastic models Assessing stochastic models
00800 00080

Informal approaches Informal approaches

Example: northern Iberia precipitation Another example: northern Iberia temperature

Monthly indices for period 1960—1990: Annual means for period 1960-199

VALUE statons, amual mean emperaiure 195071990 @ NB uncertainty in observations due
fo missing data — uncertainty
envelope produced using multiple
imputation in Rglimclim

Site 1394, variable Precipitation: Site 1394, variable Precipitation:
Max

145

@ Distributions from 100 o
simulations of 1960—1990
period, with observed statistics

135
o

125

T T T T T T T
1960 1965 1970 1975 1980 1985 1990

m
m

6
I
50 100 150 200 250 300

: e superimposed Yeur @ 39 imputations used for 95%
< o Histogram of PIT B B
4 - S - uncertainty interval on
o o ran, 9
1 eretiEte) (SEtlels Sy Einig/s; oal observations
- S— median and quartiles of -
2 4 5 8 0 on 2 4 6 8 wow simulated distributions £ T @ Only 31 annual values = coarse
Month Month o .
\ w w w resolution chosen for PIT
y 0.0 02 04 06 08 10 3
histogram

@ Shows underestimation of mean precipitation in January & February

@ Note skewed simulation distribution of monthly maxima — typical for © WG here fails to capture trend (no atmospheric predictors) — does this

precipitation (and realistic according to observations) m matter? (is this aspect important?) m

Richard Chandler (r.chandler@ucl.ac.uk) Stochastic weather generators Third VALUE training workshop 71/85 Richard Chandler (r.chandler@ucl.ac.uk) Stochastic weather generators Third VALUE training workshop 72/85



Assessing stochastic models Extremes
[elejele] J L]

Informal approaches Motivation

Distribution comparisons: quantile-quantile plots Assessing extremes — motivation

@ Many applications support decisions with implications over long periods
e.g.
Flood defences : design lifetime 30-50 years
Investment in energy infrastructure : returns over 10—20 year periods
Agricultural development : adaptation strategies with 5-20 year horizons
Safety of nuclear waste repositories : silly time scales
@ Risk-based approach: plan for specified chance of coping with worst
scenario in decision horizon
o E.g. flood defences: 10% chance of failure in 50 years (say)
@ Leads to consideration of very rare events:
o E.g. ~11in 500 year’ event in flood defence example

@ Further option to assess overall distribution:
o Compute selected quantiles of observations
o Compute corresponding quantiles of pooled distribution from all simulations
o Plot against each other — should be roughly equal
@ Quantile estimates are biased near 0 and 1, especially with small
samples in observations = avoid extreme quantiles here
@ Can use to assess agreement in, e.g., overall distribution of annual
maxima throughout simulation period

o Example in practical session
@ Compare with ‘extremes’ often studied in downscaling e.g. 95th

percentile of daily distribution (‘1 in 20 day’)
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Extremes Extremes
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Extreme value theory Extreme value theory

Extreme value theory Extreme Value Theory in one slide

Key result (paraphrase)
In almost all situations of practical interest, the maximum of a large collection

of independent, identically distributed random variables has approximately a
How to assess credibility of rare events in weather generator simulations? Generalised Extreme Value (GEV) distribution

@ Possible approach: compare simulated and observed distributions of © Parameters of distribution: shape &, scale o, location u
(e.g.) annual maxima @ Result also holds for dependent sequences
o Problem: want (e.g.) 99th percentile of distribution of annual maximum, @ Can also argue that it should hold for, e.g., annual maxima even though

have (say) 30-year record = 30 observations variables are not identically distributed (Chandler and Scott, 2011, §6.4)

@ Hence common to fit GEV distributions to annual maxima (mximum

@ Extreme value theory provides such a basis — analogous to Central Limit likelihood preferred) and use fitted distributions for extrapolation
Theorem for means

@ Need principled basis for heroic extrapolation!

@ GEV result underpins all mathematically justified alternative methods e.g.
peaks-over-threshold, point process likelihood — see Coles (2001) for

m more details m
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Extremes
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Extremes
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Extreme value theory Extreme value theory

Implication of EV theory Example of return level plot

Recall the question

Return Level Plot

How to assess credibility of rare events in weather generator simulations?

... and the previously suggested answer:

Compare simulated and observed distributions of (e.g.) annual maxima o ]

Return Level

@ Extreme Value Theory provides defensible alternative: replace observed
distribution with GEV distribution fitted to observed maxima =
o Need to account for uncertainties in GEV-based extrapolation — maximum
likelihood estimation enables this .
@ Uncertainties usually shown on return level plot: shows estimate of values o e e e e
exceeded with frequencies from once per year to once every N years

Return Period

e Observations added to plot as check on GEV fit Return level plot for annual maximum sea levels at Port
@ Possibility for weather generator assessment: add simulated maxima to Pirie, South Australia, 1923-1987 (data from isnev
‘observed’ return level plot (example in practical session) [ :ycL) library in R, originally in Coles (2001)) -ucL
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Extremes Multi-site performance
. ]

The GEV shape parameter Options available

The GEV shape parameter Assessment of multi-site performance

@ If spatial aspects are important then these must be assessed
@ Systematic variation: use single-site measures at selected sites

o May want to map single-site measures or plot against (e.g.) site altitude —
but would need to reduce previous graphs to single measure e.g. mean
bias over all simulations

@ Shape parameter & plays crucial role in behaviour of extremes:
o & < 0: finite upper limit
e & = 0: infinite upper limit but light tail
e & > 0: infinite upper limit and heavy tail (potential for ‘black swans’)

@ If using weather generator for extremes, minimal requirement is that o NB also mapping involves interpolation — beware artefacts!

associated value of & is roughly correct @ ‘Residual inter-site dependence’ now better characterised via indices of
@ Fact: for independent sequences, underlying distribution determines joint distributions at sets of sites e.g.

value of € e.g. o Correlations / variograms of (standardised?) anomalies — similar

comments apply
o Probabilities of simultaneous threshold exceedances e.g. Yan et al. (2006)

@ Alternative approach: work with spatially aggregated daily series

) ) ] ) " ) o Easier to apply & tests for realistic spatial coherence in WG output
@ But: tail behaviour can be different in dependent sequences specified via o More user-relevant in some applications e.g. hydrological modelling

conditional distributions (see Exercise 3) m m
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Normal distributions : lead to & =0
Gamma distributions : leadto & =0
Pareto distributions : lead to & > 0




Summary
L]

Summary of Part 3

@ Many judgements can be made without assessing WG performance
(what was it designed for, what data are required, ...)

o Different WGs appropriate depending on key features of interest in
application

@ Aim of performance assessment: determine whether WG has potential to
provide suitable inputs to (e.g.) impacts model

@ VALUE decision tree (Phenomena — Aspects — Indices — Measures)
helps to structure assessment exercise

@ Question for stochastic WGs framed as ‘Do observations look like
realisation from WG?’

@ Need independent test data / block cross-validation for credible
assessments

@ Clear role for informal / graphical assessments of performance: not ‘is it
right?’ but ‘is it good enough?’
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