Third VALUE training workshop, Trieste
Rglimclim practical sessions

Richard E. Chandler
Department of Statistical Science, University College London
r.chandler@ucl.ac.uk

November 5-6, 2014

Contents
1 Introduction 3
1.1 Data available o 3
1.1.1 Precipitation and temperature data 3
1.1.2 Topographicdata 4
1.1.3 Atmospheric predictors)
1.2 Setting yourself up 7
2 Session 1: building a weather generator 8
2.1 Getting started oL 9
2.1.1 Loading Rglimclim 9
2.2 Reading topographic and station information 10
2.3 Defining the station information to Rglimclim 11
2.4 Modelling precipitation occurrenceo 12
2.4.1 The simplest possible model 12
2.4.2 Checking the modelo 16
2.4.3 Including seasonality L. 18
2.4.4 Systematic regional variation L. 20
2.4.5 Accounting for autocorrelationo 23
2.4.6 Finalising the baseline occurrence model 27
2.5 Models for precipitation intensity and temperature 28

mailto:r.chandler@ucl.ac.uk

CONTENTS

2.6 Building a bivariate modelo oo
2.6.1 Yourtask
2.7 Incorporating atmospheric predictors
2.7.1 Yourtask

3 Session 2: testing the generator

3.1 Introduction to simulation oo
3.1.1 Multiple imputation
3.1.2 Connection with VALUE measures

3.2 Out-of-sample validation
321 Yourtask

4 Finally ...

30
31
33
34

35
36
38
41
41
42

43

1 INTRODUCTION 3

Topographic map of northern Iberia Altitude {m}

3000

— 2500
2000
— 1500
1000

Latitude (degrees)

500

Longitude (degrees)

Figure 1: Topographic map of the northern Iberia study area.

1 Introduction

In these practical sessions we will use the Rglimclim package to build and test a bivariate
weather generator for daily precipitation and temperature in northern Iberia, defined here
as 42°N—44°N, 9.5°W-0°W. A topographic map of the area is shown in Figure 1 — you
should recognise this, if you worked through the preparatory materials for the workshop.

This study area is chosen because it is being used to test the VALUE validation
framework — see http://www.value-cost.eu/validationTest. The region features
dry summers and wet winters, with a climate that is strongly influenced by its proximity
to the Atlantic Ocean; and it has enough topographic variation to induce, for example,
rain shadow effects on inland south-facing slopes (see http://en.wikipedia.org/wiki/
Climate_of_Spain for a summary of the region’s climatology).

1.1 Data available

Here is a brief summary of the data that we will use in the practical sessions.

1.1.1 Precipitation and temperature data

The precipitation and temperature data are from the European Climate Assessment &
(EC&A) Dataset (?), available from http://www.ecad.eu. At the time of writing, the
EC&A dataset extends until September 2014 and contains daily precipitation and tem-
perature data from 28 stations within the study area; the earliest record starts in January
1924. We will work with data from 1960 to 2002.!

Tdeally we would use data for the “official” 1979-2010 VALUE test period. However, I didn’t have
time to prepare all of the predictor data (see §1.1.3 below) for this period, sorry! — REC.

http://www.value-cost.eu/validationTest
http://en.wikipedia.org/wiki/Climate_of_Spain
http://en.wikipedia.org/wiki/Climate_of_Spain
http://www.ecad.eu

1 INTRODUCTION 4

Site altitudes (hundreds of m) from data documentation
and digital elevation map

Recorded

Figure 2: Mapped and exact altitudes for each station in the study area. The “recorded”
altitudes are taken from the EC&A station metadata; the “mapped” value for each station
is from the GTOPO30 dataset, and is for the 1km? grid square containing the station.

The EC&A dataset provides a ‘non-blended’ data product which contains missing
values, and a ‘blended’ product in which these missing values have been infilled. The
blended product is being used elsewhere within VALUE. However, the infilling of missing
values can create artificial inhomogeneities in climate records because the infilled values
have different statistical properties from the observed values. Moreover, Rglimclim does
not require complete data records — it even has its own facilities for stochastic replacement
of missing values, so that the user can investigate the associated uncertainties. We will
therefore use the ‘non-blended’” product here.

1.1.2 Topographic data

The EC&A dataset provides geographical coordinates (latitude and longitude) and al-
titude for each station. We will also use topographic data from the GTOPO30 Digi-
tal Elevation Model at http://webmap.ornl.gov/wcsdown/dataset.jsp?ds_id=10003.
GTOPO30 provides altitude data for the entire globe at roughly 1km? resolution. Figure
1 shows the GTOPO30 data as extracted. These have been used to compute several other
topographic indices, as follows:

e Mapped altitude (hundreds of m). This is the value for the 1km? GTOPO30 grid
square containing each of the EC&A stations. Usually, it differs slightly from the
exact altitude of the station. It provides a useful check on the data extraction,
however (see Figure 2).

e Mean altitude over squares of dimensions approximately 3 x 3km?, 10 x 10km? and
30 x 30km?, centred on each station. These will be referred to as ‘10km?’, ‘100km?’
and ‘1000km?’ squares below.

e Standard deviations of altitudes over 10km?, 100km? and 1000km? squares. These
can be regarded as measures of topographic variability for the different stations,
which may have some influence on (for example) the precipitation climatology.

http://webmap.ornl.gov/wcsdown/dataset.jsp?ds_id=10003

1 INTRODUCTION)

Elevation: 3 x 3km?> Topographic variation: 3 % 3km? E-W slopes: 3x 3km? N-S slopes: 3 % 3km?

Elevation: 10 x 1C»km2 Topographic variation: 10 x 10km: N-S slopes: 10 x 10km2

N-S slopes: 30 % 30km?

‘?Ml

FY A

Elevation: 30 x 30km> Tepographic variation: 30 % 30km’

Figure 3: Topographic indices for the study area, computed from the GTOPO30 dataset.
Blue and yellow shading correspond respectively to ‘low” and ‘high’ values of each index.

e East-West slopes computed over 10km?, 100km? and 1000km? squares. These were
produced by regressing the mapped altitudes on the longitude co-ordinates within
these squares, and converting the regression slope to units of (hundreds of metres’
altitude change) per km. These slopes can be considered as a measure of “aspect”,
and are potentially useful for characterising (for example) rain shadow effects.

e North-South slopes, similarly.

Figure 3 provides maps of each of these indices over the study region.

1.1.3 Atmospheric predictors

We will consider two sets of atmospheric predictor data. Both are for the period September
1957 to August 2002, and are ultimately derived from the ERA40 Reanalysis dataset
(http://apps.ecmwf.int/datasets/data/erad0_daily/). Note that “official” VALUE
work should use the ERA-INTERIM reanalysis rather than ERA40 (see http://www.
value-cost.eu/validationTest). The reason for using ERA40 here is explained below.
The atmospheric predictor sets are as follows:

e Spatially averaged values of selected variables, for the region 27.5°N-45°N, 10°W—
15°E. The variables provided are mean sea level pressure, 10-metre u- and v- wind

http://apps.ecmwf.int/datasets/data/era40_daily/
http://www.value-cost.eu/validationTest
http://www.value-cost.eu/validationTest

1 INTRODUCTION 6

velocity components and wind speed, 2-metre air temperature and dewpoint tem-
perature. ERA40 provides 6-hourly fields of each variable (except wind speed, which
is calculated from the u- and v-components) on a 2.5° grid; each variable has first
been averaged over the selected region for each 6-hourly field, and then the results
have been aggregated to provide daily and monthly time series for each variable.

This choice of variables has been guided by the results in 7. These authors suggest
that for downscaling in Spain one should use sea level pressure and mean tempera-
ture from their region Z8, which is the region considered here. In addition however,
there is consensus within the experienced statistical downscaling community that
some measures of (a) moisture availability (b) air flow may be helpful. This is why
the dewpoint temperature and wind information are included.

e Daily and monthly time series of weather states for the Bay of Biscay and Iberian
Peninsula, for the period September 1957 to August 2002. The data are derived
from EU COST Action 733 (main web page at http://cost733.met.no/, although
the data files and documentation are from http://cost733.geo.uni-augsburg.
de/cost733wiki). COST733 compared many different weather classification tech-
niques, for different European regions (see left panel of Figure 4). The region of
interest here is region D09 “Iberia / W Med”, formally defined as 31°-48°N and
17°W-9°E. From the available classifications produced by COST733, the data used
here are based on the 8-state GWT (GrossWetterTypes) methodology derived from
mean sea level pressure fields. This selection is based on advice from Radan Huth
(personal communication), because the resulting states have a clear physical inter-
pretation. Specifically, the classification is based on correlations between each day’s
MSLP field and selected “reference” fields, and reflects the rough direction of the
flow as follows: 1 N, 2 NE, 3 E, 4 SE, 5 S, 6 SW, 7 W, 8 NW. For example, the
right panel of Figure 4 shows the mean pressure field for all days classed as Type 1.

One difficulty with the use of weather states for weather generation is that the sta-
tistical models can be parameter-intensive if there are many states. To simplify
our task therefore, the initial set of eight GWT states has been reduced to five by
hierarchical clustering: standardized seasonal anomalies in the temperature, pro-
portion of wet days and wet-day precipitation intensity were calculated from the
station data for each of the states, and states with similar values for each of these
standardized anomalies were merged. Figure 5 shows clearly that states 1&2, 3&4
and 6&7 have similar precipitation-temperature climatologies. Thus the new state
1 can be interpreted as “N-NE flow”, state 2 is “E-SE”, state 3 is ‘S’, state 4 is
“W-SW” and state 5 is “NW”.

The COST733 weather classifications are precomputed from ERA40 data, from 1957
to 2002. We will compare weather generators that use these weather types with those
based on spatially-averaged predictors. To ensure a fair comparison, we must use
the same time period and reanalysis product for all our weather generators. This is
the reason for not using the “official” VALUE time period and reanalysis dataset.

http://cost733.met.no/
http://cost733.geo.uni-augsburg.de/cost733wiki
http://cost733.geo.uni-augsburg.de/cost733wiki

1 INTRODUCTION 7

MSLP(year) for GWTO9_YR_SO1_SP_D09 type #01

Figure 4: Left panel: European regions considered in COST Action 733 when assessing
the performance of weather classification techniques. The region relevant to the present
exercise is D09. Right panel: mean sea level pressure for the Bay of Biscay and Iberian
Peninsula, for all days classed as type 1 (northerly) by the COST733 GWT classification
scheme. The plot is from the COST733 web site at http://cost733.geo.uni-augsburg.
de/cgi/cost733plot.cgi, which unfortunately does not provide any labels or explana-
tion of the colour scales. The interpretation is therefore either of northerly flow (high
pressure in the north and low pressure in the south) or southerly flow (vice versa).

1.2 Setting yourself up

You should have installed R and RStudio on your computers already, along with the neces-
sary R packages — if not, follow the instructions in file Rglimclim_Preparatory.pdf at
http://www.value-cost.eu/TS3. Having done this, everything you need for the practi-
cal sessions can be found in the zip archive WeatherGenerators.zip at the same web
address. Download this archive, and unpack it somewhere sensible on your computer. It
creates the following subdirectories:

HANDOUTS : contains copies of the handouts and slides for the weather generator training.
PRACTICALS : contains all of the material for the Rglimclim practical sessions.

PREPARATORY : contains the preparatory material that you were sent before the workshop,
updated to include the latest version of Rglimclim.

There is an additional zip archive called WGData.zip on the workshop web page:
this contains all of the original data as downloaded (except the ERA40 reanalysis data,
for which a python script is provided so that you can retrieve the original data from
the ERA40 servers). It also contains an R script called makedata.r, which was used to
convert the original data into a format that Rglimclim can work with; and README.txt
file to explain everything else. This archive is large (more than 30Mb) so you should not
download it during the workshop. However, you may find it helpful later to discover how
the processing was done.

http://cost733.geo.uni-augsburg.de/cgi/cost733plot.cgi
http://cost733.geo.uni-augsburg.de/cgi/cost733plot.cgi
http://www.value-cost.eu/TS3

2 SESSION 1: BUILDING A WEATHER GENERATOR 8

Cluster Dendrogram

3.0

25

Height
1.5

1.0

1 - m
]

— © ~

0.0

GWT class

Figure 5: Hierarchical clustering of the GWT weather states from COST Action 733.
Inter-state distances are computed from differences in mean standardized monthly anoma-
lies for temperature, precipitation occurrence and wet-day precipitation intensity:.

2 Session 1: building a weather generator

Our task in the first session is to build a bivariate weather generator that can generate
simultaneous daily sequences of precipitation and temperature at any collection of lo-
cations in northern Iberia. This sounds difficult! Fortunately, Rglimclim is designed to
help its users approach the task in a structured way; and, moreover, to avoid the tedious
manipulation of data files that is often required when analysing multisite data.

Our weather generators are all based on generalised linear models (GLMs). We will use
logistic regression models for precipitation occurrence, gamma distributions for precipi-
tation intensity on “wet” days, and normal distributions for temperature. These choices
are fairly standard for the modelling of precipitation and temperature in a GLM-based
framework; see, for example, ?77. Specifically, let Ry and Ty denote the precipitation
and temperature respectively, at site s on day t. Then the structure of our models is:

P(Rst > 0) = Tst (1)
RylRy >0 ~ T(a,\y) with E(Ry|Ry>0)=a/\;=p" say; (2)
and Ty ~ N (ug),a?t> . (3)

The parameters 7y (the probability of experiencing precipitation at site s on day ¢, ,ugf)
(the expected precipitation intensity on a ‘wet’ day), 1 and o2 (the expected value

2 SESSION 1: BUILDING A WEATHER GENERATOR 9

and variance of the temperature distribution) are related to linear predictors via logistic,
logarithmic, identity and logarithmic link functions respectively. The parameter a (the
coefficient of variation of precipitation intensity distributions) is assumed to be constant
— this assumption has been found to be reasonable in the literature. Thus, denoting by
ngt) a generic linear predictor (i.e. linear combination of covariate values representing the
effects of topography, seasonality, autocorrelation and large-scale atmospheric predictors),

we set
1og(G) = (4)

1_7Tst
R (R)
loguly) = o4, (5)
T (T)
py) = (6)
and logo? = n§§2). (7)

We need to choose covariates and estimate their coefficients in each of these four
different models. We also need to specify some inter-site dependence structures so as to
build weather generators that are truly multi-site; however, this is fairly easy. We will
proceed in three stages:

1. Build multi-site generators for each variable individually, without including atmo-
spheric predictors. The aim is to characterise the climatology of each variable.

2. Link the individual generators to incorporate dependence between the two variables.

3. Extend the resulting joint generator by including the effects of large-scale predictors.

The first stage is by far the most difficult. I have therefore done it for you, and my
‘baseline” models are provided to you as R objects. However, we will follow the process in
detail for the precipitation occurrence model defined by equations (1) and (4).

We will build our weather generators using precipitation and temperature for the
period 1960-1990; in tomorrow’s session we will use the 1991-2002 period for validation
purposes. Let’s start.

2.1 Getting started

Start up RStudio, and use the Session menu to change the working directory to the
PRACTICALS/ directory created when you unpacked the WeatherGenerators.zip archive
in Section 1.2. In the bottom right-hand subwindow, click on the file Mode1lBuilding.r:
this is an R script containing all of the commands needed in the first part of this session.
The script will open in the upper left-hand subwindow.

2.1.1 Loading Rglimclim

After the comments at the top of the script, the first command is 1ibrary(Rglimclim).
This loads the Rglimclim package. Run the command: you should see the message

2 SESSION 1: BUILDING A WEATHER GENERATOR 10

Use ’help("Rglimclim-package")’ to get started. So: run the next command, which
is help("Rglimclim-package"). Read through the text in the help window, noting in
particular the idea of partitioning covariates into ‘site’, ‘year’, ‘month’ and ‘day’ effects
and their interactions. When you have read through the help page, click one of the PDF
package manual links. The package manual should open in an external window.? Scroll
to page 15 of the manual, and then minimise its window — we will return to this later.

2.2 Reading topographic and station information

Run the next line in the R script: load("Topography.rda"). This loads the GTOPO30
topographic data for the study area, so that we can plot maps.

The next few commands read the site information from file stations.dat, discard
any sites that are outside the study area and store the result in station.data:

LatLims <- c(42,44)

LongLims <- c(-9.5,0)

station.data <- read.table("stations.dat",header=TRUE,,

colClasses=c(rep("character",2) ,rep("numeric",16)))

station.data <- station.data[station.data$lLatitude > LatLims[1] &
station.data$latitude < LatLims[2] &
station.data$longitude > LongLims[1] &
station.data$longitude < LongLims[2],]

Next, we will identify some specific stations that have been chosen for inclusion in
the VALUE validation test exercise (see file stations_NorthIberia.pdf in the archive
VALUE_validationTest_v2.zip at http://www.value-cost.eu/validationTest):

station.data$VALUEstation <- rep(O,nrow(station.data))
station.data$VALUEstation[station.data$ID %in% c(" 420","1394","1395","3909",
"3910","3913","1392")] <- 1

We will use this information in Session 2, when we validate our weather generators.

I discovered one small problem with these EC&A data, when I first started using them.
This is: there are two sites (3910 and 3911) that are recorded in identical locations, but
whose records do not overlap. My guess is that in fact they are the same station with a
change of recording equipment; however, the presence of two apparently different sites,
at identical locations, creates numerical problems for Rglimclim (associated with singular
covariance matrices). For our purposes, the easiest solution is to discard one of the sites,
e.g. site 3911:

station.data <- station.datal[station.data$ID !'= "3911",]

2This does not always work when using the package from within RStudio — there seems to be some
conflict between RStudio and Acrobat Reader. If you get a “file is already open or in use” error, close
down Acrobat Reader and open the file manual. pdf in the PRACTICALS directory instead. This is the latest
version of the Rglimclim manual, extracted from the doc/inst folder of the .zip or .tar.gz archive from
which you originally installed the package.

http://www.value-cost.eu/validationTest

2 SESSION 1: BUILDING A WEATHER GENERATOR 11

2.3 Defining the station information to Rglimclim

The next step is to convert all of this station information into a format that Rglimclim can
interpret. This is done using the make.siteinfo() and define.regions() commands
provided by Rglimclim. Run the next few lines of the script, up to

siteinfo <- make.siteinfo(station.data,coord.cols=c(4,3),
site.codes=1,site.names=2,region.col=19,
attr.names=site.attributes,
regions=define.regions(c("Northern Iberia",
"VALUE stations")))

This last command creates an Rglimclim site information database (formally, an object
of class siteinfo) using the information held in station.data. Furthermore, specific
columns of station.data have special interpretations, thus:

e Columns 4 and 3 respectively contain the x- and y- coordinates of the stations. This
can be used to produce maps of spatial structure later on; also to calculate distances
between stations, which will be useful.

e Column 1 contains site codes: these are 4-character codes used by Rglimclim to make
the link between files containing predictand data, and the site information database.
In this particular instance, the site codes are just the station numbers.

e Column 2 contains the site names: these will be used to label some of the output.

e Column 19 indicates which ‘region’ each station belongs to. A ‘region’, in Rglim-
clim, is a subset of sites for which we might want to compute simulation summary
statistics. Regions are numbered consecutively starting with zero (the entire area
— all stations are automatically assigned to this region). In our work, except for
the entire study area, the only ‘region’ corresponds to the set of “official” VALUE
stations. This ‘region’ is defined because we might want to study these stations in
particular when assessing the performance of our weather generators in Session 2.

e The argument attr.names is used to set descriptive names for the site attributes.
These will be used to produce informative labels for the output.

To see the effect of this, run the next command in the script: print(siteinfo). You
learn how many sites are in the database, as well as the attributes available for each
site (to remind yourself what these attributes are, you may care to refer to Section 1.1.2).
Notice that the order of the attributes has changed from the original data file: specifically,
the longitude and latitude, as x- and y-coordinates, are now the first two attributes.

The print() command gives you an interpretable overview of the information con-
tained within an object. In fact however, a siteinfo object contains a lot of detailed
organisation, organised in a list. To see what lies beneath the surface, type the next
command in the script which is print (names(siteinfo)). This is a useful trick: you

2 SESSION 1: BUILDING A WEATHER GENERATOR 12

will often want to access information that is buried somewhere in an Rglimclim object,
and the names () command can help you to find it.

This example of the make.siteinfo() command should be self-explanatory. If you
want to find out more however, type help(make.siteinfo) at the console prompt.

2.4 Modelling precipitation occurrence
2.4.1 The simplest possible model

We have defined our site information; now we can fit some models. We will start with

the simplest possible logistic regression model for precipitation occurrence, in which ng)

in equation 4 is a constant: ng) = [y say. In this case, our occurrence model is defined as
Tst . eXp [ﬁo]

In = or equivalentl Mg = ——————— . 8

(1—@) Bo q Yo S T exp] (8)

To fit this model, we must first define its structure to the system and then estimate
the parameter §y. To help you, Rglimclim comes with an object already defined for
this model structure, called ConstantModel. The next two lines in the script load the
predefined Rglimclim objects (data(GLCdemo)) and display the structure of the “constant-
only model” (print(ConstantModel)). They produce the following output:

CONSTANT-ONLY MODEL

Main effects:

Coefficient
Constant 0.0000

No dispersion parameters defined

Spatial dependence structure:

Structure used: Independence

Warning message:

In print.GLC.modeldef (ConstantModel)

No global quantities (trace thresholds etc.) defined

This is not particularly controversial: the coefficient value (/) is set to zero and there
is some other information about dispersion parameters and spatial dependence, which is
not important for the moment. We should worry, however, about the warning message.
For many weather variables such as precipitation, the recording of small values may be
inconsistent between stations and it is therefore common practice to define a threshold
below which values should be considered as ‘effectively zero’. No such threshold has been
defined here, and Rglimclim warns us that this may cause problems. We are dealing with
precipitation, so we should take the warning seriously. In the literature, a threshold of

2 SESSION 1: BUILDING A WEATHER GENERATOR 13

Imm is often used to define a ‘wet’ day; so we will define a threshold of 0.95mm (this
way, we guarantee that values of exactly lmm are considered ‘wet’).

To define the ‘trace threshold’ to the system, we will define a revised model structure
using a model definition file. The easiest way to do this is to create a valid definition file
using the existing structure, and then to change it:

write.modeldef (ConstantModel,file="0ccModelOInit.def")

This creates a file called 0ccModelOInit.def. You should see it in the Files tab of your
lower right-hand subwindow in RStudio — if not, refresh the tab by clicking on the word
PRACTICALS at the top of the tab. Now, proceed as follows:

1. Open OccModelO_Init.def by clicking in the Files tab.

2. Scroll down to the bottom of the file. Note the row containing the model title
CONSTANT-ONLY MODEL: this will be used to label software output (it isn’t very im-
portant, and only becomes useful when we're comparing different models). The only
other part of the model definition is the final line (line 49 in the file)

0 0.0000 Constant

The first number here tells Rglimclim what model component is being defined — is
it a site effect, a daily effect, an interaction, ...? Here the number is zero. Look at
page 15 in the package manual that you opened earlier: component 0 corresponds
to the constant term in the model. The second number is the coefficient value in
the model definition — currently zero. The coefficient value doesn’t matter at the
moment — we are only defining the structure of the model.

3. Look again at Table 1 on page 15 of the Rglimclim manual. This shows that ‘compo-
nent 8 is used to define ‘global’ quantities, such as trace thresholds. It also refers us
to Table 6, because the software needs to know how to handle ‘trace’ values if they
occur. My experience is that ‘soft thresholding’ is often very effective (see reference
list); this is option 2. So, add the line

8 0.9500 1 2

to the end of the OccModelO_Init.def file. This will be line 50. Take care with
the alignment: the 8 should be below the 0, the 0.1000 below the 0.0000 and the
remaining values are each preceded by four spaces. Save the file and close it.

4. Read the new model definition into R (next line in the script):

OccModelO.init <- read.modeldef ("OccModelOInit.def",model.type="logistic",
siteinfo=siteinfo,
var.names=c("Precipitation","Temperature"))

2 SESSION 1: BUILDING A WEATHER GENERATOR 14

You may be surprised that the model type, site information and variable names
are specified at this stage. For more complicated models, these are sometimes
needed to initialise the model structure. For more details on this command, type
help(read.modeldef).

If you get an error

Error in read.modeldef("OccModelOInit.def", model.type = "logistic",
Input error while reading line 51 of file OccModelOInit.def.

the reason is that you have accidentally inserted a blank line at the end of the model
definition file: re-open the file and delete it. The clue is in the error message —
the software is trying to read line 51 of the file but, as noted earlier, the last line of
model definition should be line 50.

5. Check that the system has interpreted the definition file as you intended, by running
the next command print(0OccModelO.init):

CONSTANT-ONLY MODEL

Response variable: Precipitation

Main effects:

Coefficient
Constant 0.0000

’Soft’ threshold for +ve values: 0.9500
No dispersion parameters defined

Spatial dependence structure:

Structure used: Independence

The software prints a meaningful description of the model, and the warning message
has been replaced with the trace threshold definition.

6. Having defined the model structure to the system, we can fit the model:

OccModelO <- GLCfit(OccModelO.init,which.response=1,siteinfo=siteinfo,
data.file="NorthIberiaPrecipTemp_1960-1990.dat",
diagnostics=1,nprev.required=-1)

The arguments to the GLCfit () command here are as follows:

2 SESSION 1: BUILDING A WEATHER GENERATOR 15

OccModelO.init : this defines the model structure. Note that when we used
read.modeldef () to create this object, we specified model . type="logistic",
so Rglimclim already knows that we want to fit a logistic regression model.

which.response=1 : this tells Rglimclim that the response variable (predictand) is
the first variable appearing in data.file (see below).

siteinfo : this provides information about the stations used in the analysis (in
fact, for this very simple model, this information used only to identify the sites
in the data file).

data.file : this is the name of the file containing the predictand data. For more
details on the format of this file, type help(GLCfit) and scroll down to the
data.file argument. In our example, NorthIberiaPrecipTemp_1960-1990.dat
contains precipitation and temperature data from all of the EC&A stations in
the study area for the period 1960 to 1990 (inclusive); precipitation is the first
variable in the file, and temperature is the second.?

Don’t worry about the other two arguments yet — we will return to them later.

The software responds with

Checking files ...
Reading data ...
Beginning estimation ...

Iteration Log-likelihood Largest standardised score
0 -141815.141 -156.1451 (parameter 1)
1 -129389.799 -6.2767 (parameter 1)
2 -129370.036 -0.0311 (parameter 1)
3 -129370.036 -0.0000 (parameter 1)
4 -129370.036 -0.0000 (parameter 1)

Computing covariance matrix of estimates ...

The fitting is done by maximising a log-likelihood function obtained under the as-
sumption that sites are independent of each other. The fitting algorithm is iterative:
at each iteration, the routine outputs the current value of the log-likelihood as well
as the largest standardised score (this is the gradient, normalised by the second
derivative of the log-likelihood, for each parameter in the model).” In this case,
convergence is fast: the maximised log-likelihood is —129370.036, and the gradient
is zero so this is indeed a turning point of the log-likelihood function.

7. Inspect the fitted model by running the command print (0ccModelO):

CONSTANT-ONLY MODEL

3The file was created using the write.GLCdata() command — see the makedata.r script in your
DATA/ subdirectory if you want more information.
4The amount of output can be controlled by the verbosity argument to GLCfit ().

2 SESSION 1: BUILDING A WEATHER GENERATOR 16

Response variable: Precipitation

Main effects:

Coefficient Std Err Z-stat Pr(|Z|>z)
Constant -0.7200 0.0137 -52.5457 < 2.2e-16

Global quantities:

’Soft’ threshold for +ve values: 0.9500
No dispersion parameters defined

Spatial dependence structure:

Structure used: Independence

Notice the following: :

e The ‘Coefficient’ value of -0.7200 is the estimate of 5y in (8). The corresponding
probability of precipitation on any day is exp(0. — 0.72)/[1 + exp(—0.72)] =
0.327. This is a complicated way to learn that 32.7% of the precipitation values
in the database are greater than 0.95mm, but it provides some insight into the
model structure, and serves as a simple check on the output!

e The value of 0.0137 in the ‘Std Err’ column is a robust standard error that
accounts for the possibility that data from different sites are not independent.®
The associated Z-statistic and p-value allow us to test the null hypothesis
Hy : By = 0 against the alternative H; : f; # 0: the tiny p-value suggests
an overwhelming rejection of this hypothesis which is, however, of no scientific
relevance for this particular model.

2.4.2 Checking the model

In the GLCfit () command above, we used the argument diagnostics=1. This tells the
routine to store some basic information to help check the model structure (alternatives
are diagnostics=0 to suppress these calculations, and diagnostics=2 to produce an

SAll “standard” GLM fitting packages calculate their estimates and standard errors under the as-
sumption that the observations are independent. This assumption is almost certainly false when fitting
to multi-site time series data — in particular, data from neighbouring sites are unlikely to be independent.
However, it can be shown that the estimates themselves will still be reasonable even in the presence of
such dependence — so Rglimclim is justified in using an “independence log-likelihood” to fit the model.
A more serious consequence of inter-site dependence is that the usual standard errors for the parameter
estimates are incorrect. To see the standard error that would be obtained from a “standard” GLM soft-
ware routine, type print (OccModelO,which.se="naive"). You will find that the correct standard error
is almost three times as large as this “naive” version — so uncertainty in the parameter estimates could
be seriously underestimated unless inter-site dependence is accounted for.

2 SESSION 1: BUILDING A WEATHER GENERATOR 17

output file containing detailed diagnostic information for further analysis). To see some
of these diagnostics, type summary(OccModelO,tables=NULL). Don’t worry about the
tables argument for the moment.

You will see some basic information about the fit, followed by a table entitled
Occurrence frequencies vs forecasts. The idea behind this table is that if we collect
together all days for which the modelled probability of precipitation is 0.1, then 10%
of these days should have experienced precipitation. In practice, we collect together
all days for which modelled probabilities lie in the ranges (0,0.1),[0.1,0.2),...,[0.9,1.0)
and calculate the observed and expected numbers of wet days in each case. A lack of
agreement in any cell of the table indicates a problem with the model. Clearly however,
for the present trivial model the information from such a table is not particularly useful (it
indicates that there were 204596 days — i.e. all of them, because the model only contains
a constant term — when the modelled probability of precipitation was between 0.3 and
0.4, and that the observed and expected proportions of wet days were both 0.327).

As well as checking the probability structure, it is useful to check for systematic
structure in the data that is not captured by the model. Graphical diagnostics provide
an easy way to to this. Run the next few commands in the script:

if (dev.cur()==1) x11(width=8,height=6)
par (mfrow=c(2,2) ,mar=c(3,3,3,2) ,mgp=c(2,0.75,0) ,1wd=2,ask=TRUE)
plot (OccModelO,which.plots=1:2,1wd=2)

The first of these commands opens a new graphics window, unless a graphics device is
open already. The next command sets up a 2 x 2 array of plots, with some control over the
margins and line widths, and the final plot() command produces the diagnostic plots.

The first plot is a graphical representation of monthly mean Pearson residuals from the
model. If the model is correct, the individual Pearson residuals all come from distributions
with mean zero and the same standard deviation (usually 1). The monthly mean Pearson
residuals should therefore be randomly scattered around zero: the dashed lines in the plot
show the range within which most of them should lie. Here, most of the mean residuals
fall outside the dashed lines, with a very strong seasonal cycle: precipitation occurrence
is less frequent in summer, and more frequent in winter, than the model predicts.

The second plot shows the monthly standard deviations of the Pearson residuals, along
with their expected value of 1. The plots in the bottom row show the same information
but for annual rather than monthly means: these are designed to reveal any time trends
that have not been captured by the model. Here, there is some seasonal structure in the
monthly standard deviations, and also a sharp decline in precipitation occurrence at the
end of the record (large negative mean residuals in 1989 and 1990).

The clear structure in these plots tells us that the model is inadequate. An obvious
way to improve things is to model the seasonality. Before we do this however, it may also
be helpful to look for unexplained spatial structure:

par (mfrow=c(1,1) ,mar=c(5,3,5,3))
image (topo.longs,topo.lats,topo.data,col=terrain.colors(50) ,axes=FALSE,
xlab="" s ylab:" ")

2 SESSION 1: BUILDING A WEATHER GENERATOR 18

box (lwd=2)
plot (OccModelO,which.plots=3,
site.options=1list(add.to.map=TRUE,site.labels="none",scale=4))

This produces a topographic map of the study area, with circles drawn at each station
location. The relative sizes of the circles indicate the values of the standardised mean
Pearson residuals at each site; the solid (dashed) circles indicate sites with positive (neg-
ative) mean residuals i.e. sites that are wetter (drier) than the model. Circles drawn in
‘thick’ lines indicate mean residuals that differ significantly from zero at the 5% level.
This occurs here at almost all sites. Moreover, the solid circles tend to be around the
coast and the dashed circles are inland: this clear spatial organisation suggests that there
is systematic regional variation in the precipitation occurrence (coastal sites experience
more frequent precipitation than inland sites), which is not captured by the model.

Notice the differences between the two plot commands above: the first one used the
arguments which.plots=1:2 for seasonal and annual diagnostics, and the second used
which.plots=3 for regional diagnostics. For more details, type help(GLC.modeldef).

2.4.3 Including seasonality

We have established that there is unmodelled seasonality in the data(!). We will therefore
add some seasonal structure to the model. The steps are as follows:

1. Write the fitted model structure to a new definition file called OccModel1Init.def:
write.modeldef (OccModelO,file="0ccModellInit.def")

2. Open this new definition file for editing. Notice that the value of the ‘Constant’
term is now —0.7200, as fitted previously.

3. Choose a plausible representation of seasonality, from the options available in Tables
1 and 2 on pages 15 and 16 of the Rglimclim manual. A good starting point is usually
a Fourier representation, at a daily timescale. This requires both cosine and sine
coefficients, since the phase of the cycle is unknown. For a daily timescale, we must
look at Table 2. This tells us that the required terms correspond to ‘Code 1’ values
of 21 and 22 respectively. So to define a simple seasonal cycle, insert the following
two lines between the ‘Constant’ and ‘Trace threshold’ rows (note that in Rglimclim
model definition files, rows must be ordered according to the ‘component’ value
which is 4 for daily effects and 8 for the trace threshold):

4 0.0000 21
4 0.0000 22

In the absence of prior information, zero is often a good initial value for the coeffi-
cients in model definition files.

Once again, take care with the alignment: there should be three spaces before both
the 21 and 22 so that these codes each occupy five positions in their respective
records, and so that they align with the first code in the ‘trace threshold” definition.

Save the modified definition file and close it.

2 SESSION 1: BUILDING A WEATHER GENERATOR 19

4. Read the new model definition into R and check it:

OccModell.init <- read.modeldef("OccModellInit.def",model.type="logistic",
siteinfo=siteinfo,
var.names=c("Precipitation","Temperature"))

print (OccModell.init)

Under Main effects, you should now see the following (if not, you have made a
mistake and should correct the definition file before proceeding):

Coefficient

Constant -0.7200

1 Daily seasonal effect, cosine component 0.0000
Daily seasonal effect, sine component 0.0000

5. Fit the updated model and inspect it:

OccModell <- GLCfit(OccModell.init,which.response=1,siteinfo=siteinfo,
data.file="NorthIberiaPrecipTemp_1960-1990.dat",
diagnostics=1,nprev.required=-1)

print (OccModell)

summary (OccModell,tables=NULL)

In this new model, all three coefficients differ from zero at any reasonable level of
significance (this is not surprising, because we known that precipitation is seasonal).
The Occurrence frequencies vs forecasts table now shows some variation in the
modelled precipitation probabilities, coming from the modelled seasonal cycle. To see
whether the model captures all of the seasonality in the data, plot the results again:

par (mfrow=c(2,2) ,mar=c(3,3,3,2) ,mgp=c(2,0.75,0) ,1lwd=2,ask=TRUE)
plot(OccModell,which.plots=1:2,1wd=2)

This still shows some seasonal structure in the monthly mean Pearson residuals, with
peaks in April-May and October-November and a minimum in July. This kind of struc-
ture, where the peaks are separated by a period of about six months, suggests that the
seasonal cycle is not an exact sinusoid. A simple remedy is to add a harmonic term to
the model — Rglimclim (Table 2 on page 16 of the manual) allows this via codes 23 and
24. Accordingly, create a new model definition file:

write.modeldef (OccModell,file="0ccModel2Init.def")

Open the file for editing, and insert two new rows so that the main model definition
section looks like this:

0 -0.7438 Constant

4 0.4488 21 Daily seasonal effect, cosine component 1
4 0.2674 22 Daily seasonal effect, sine component 2
4 0.0000 23

4 0.0000 24

8 0.9500 1 2 ’Soft’ threshold for +ve values

2 SESSION 1: BUILDING A WEATHER GENERATOR 20

Save the file, close it, read the updated model definition, check it, fit the new model,
print the result, view the diagnostic table and produce the diagnostic plots (script com-
mands up to plot(OccModel2,which.plots=1:2,1wd=2)). You should see that most of
the systematic seasonal structure (in both the mean and standard deviation) has been
eliminated. There is a large negative mean residual in March, but we should bear in mind
that the dashed lines in the plots are computed under the assumption that the model
is correct, and this is certainly not the case (we haven’t modelled the regional variation
yet, nor have we attempted to account for autocorrelation). We should revisit this later.
Similarly, the strong downward trend at the end of the 1980s can perhaps be explained
later by including the effects of large-scale atmospheric predictors in the model.

For our initial, constant-only model, the final residual plot provided evidence of sys-
tematic regional variation in precipitation occurrence. Run the next set of commands,
from par(mfrow=c(1,1) ,mar=c(5,3,5,3)) to plot(OccModel2,which.plots=3, ...,
to regenerate the same plot for the new model. Unsurprisingly, nothing has changed. We
will therefore try to model the regional variation next.

2.4.4 Systematic regional variation

The representation of systematic regional variation is often the most difficult task when de-
veloping a multi-site weather generator. Rglimclim offers some fairly simple, but nonethe-
less flexible options. In this particular instance, the pattern of positive and negative
mean residuals could perhaps be approximated using a quadratic surface, with a mini-
mum in the south-east of the study area and increasing up towards the north and west.
Such a quadratic surface may be represented by adding linear and quadratic functions
of latitude and longitude to the model, along with a cross-product of the linear terms
(i.e. w1, 2%, x9, 22 and 179, where z; and x5 denote latitude and longitude). In the GLM
framework, the cross-product term can formally be regarded as an interaction between
the latitude and longitude effects (more on interactions later).

Instead of working directly with latitudes and longitudes here however, we will use
Legendre polynomials. You don’t need to know much about these — just think of them
as a useful reparameterisation of the usual polynomials. The motivation for using them
is that they are approximately uncorrelated if the stations are spread roughly uniformly
across the study area (7): this increases the computational stability of the model fitting
and avoids excessive collinearity between different covariates in the model.

Legendre polynomials are always defined over a finite range. We must therefore specify
the range of latitudes and longitudes that we are interested in. We will just use the
definition of the study area i.e. 42°N-44°N, 9.5°W-0°W.

If you were doing this yourselves, at this point you would need to write the existing
model definition to a new file (write.modeldef (OccModel2,file="0ccModel3Init.def"))
and then edit it. From here onwards however, to save time I recommend that you just
use the definition files that have already been prepared for you. These can be found
in the subdirectory PRACTICALS/DEFINITIONS/: you may care to copy all files named
OccModel?Init.def to PRACTICALS/so that you can see them. The amended version of
OccModel3Init.def contains the following:

2 SESSION 1: BUILDING A WEATHER GENERATOR 21

-0.7530 Constant

.0000 31

.0000 32

.0000 31

.0000 32

.4696 21 Daily seasonal effect, cosine component
.2795 22 Daily seasonal effect, sine component
.1113 23 Daily half-year cycle, cosine component
-0.1867 24 Daily half-year cycle, sine component
0.0000
-9.5000
0.0000
42.0000
44.0000
0.9500

N N - =
SN -

0 ~NNNNODD DD R R R RO
|
o

=W W R
NN EE N EF~P, W

’Soft’ threshold for +ve values
Some explanation would be helpful:

e The first four new rows have the “component” field set to 1 — from Table 1 on page
15 of the manual, this indicates that they correspond to site effects.

e There are two ‘codes’ on each of these four rows. The first selects the site attribute,
as defined in the siteinfo object (recall that the first two attributes are longitude
and latitude, respectively). The second defines a transformation of the site attribute.
From Table 3 on page 17 of the manual, linear and quadratic Legendre polynomials
are transformations 31 and 32. So: these four rows together define linear and
quadratic Legendre polynomial transformations of latitude and longitude.

e The next addition to the definition file is the row with the “component” field set
to 5. From Table 1 in the manual, this defines a two-way interaction term; and
the ‘Code 17 and ‘Code 2’ select the interacting covariates. In our updated model
definition, the linear terms in longitude and latitude are respectively the first and
third covariates (not including the constant term).

e The final additions have the “component” field set to 7. Again from Table 1, these
define parameters in nonlinear transformations. Table 3 shows that a Legendre
polynomial transformation requires two parameters, defining the range for the rep-
resentation. Accordingly, the first (minimum) and second (maximum) parameters
in the Legendre polynomial transformation of covariate 1 (longitude) are defined as
-9.5 and 0.0 respectively; and the corresponding latitude (covariate 3) limits are set
to 42 and 44. Rglimclim is smart enough to realise that the same limits should be
applied to covariates 2 and 4 (the quadratic terms).

Read this new model definition using read.modeldef () and print the result to check
that it is correct. Fit the model and look at the residual map (script commands up to
plot(OccModel3,which.plots=3, ...). There is much less systematic structure now,
although there are still many thick circles. There are two sites in the south-west of the
study area with very large circles. It might be worth finding out more about these:

2 SESSION 1: BUILDING A WEATHER GENERATOR 22

summary (OccModel3, tables="site")

By specifying tables="site", we obtain a table with details of the residual performance
at each site individually. Scanning through this table, the mean residuals at Ourense
(Instituto) and Pontevedra (Instituto) seem particularly large. Perhaps there is a problem
with the data from these stations? Alternatively there may be some topographic controls
on precipitation occurrence at these two sites.

To explore this possibility, we can plot the mean Pearson residuals at all sites against
each of the topographic indices in our siteinfo object. To do this, we must find
out how to access the residual information. The next few lines of the script (up to
site.resids <- OccModel3$Residuals$Pearson$Site.table$Mean) show how to do
this, and to extract the mean site residuals to a vector that can be used for plotting.
The next command uses all.equal() to check that the residual table is in the same
order as the site information; and then, after setting up a 4 x 4 array on the graphics
device, the loop for (i in 3:16) { ... } produces the required plots.

The two sites with large mean residuals appear as outliers on every plot. Thus the large
mean residuals cannot obviously be linked to any of our topographic indices. Moreover,
their inclusion in the model could seriously distort the estimated topographic effects for
the remaining sites (e.g. they contribute substantially to the apparent negative correlation
between altitude and precipitation occurrence).

We have two options: either discard the data from these two sites, or account for
them in the model. In general, it is poor scientific practice to discard data without good
reason: the problem could be with the model, not the data. Therefore, in the first instance
we will account explicitly for these sites in the model. The easiest way to do this is to
add a ‘dummy’ site attribute, taking the value 1 at each of these two sites and 0 at the
remainder. If this attribute is added to the model as a covariate, its coefficient will provide
an adjustment to the linear predictors {772:)} at these two sites alone.

In the script, the next few lines of code redefine the siteinfo object to include this
additional ‘dummy’ attribute. An updated model definition file, 0ccModel4Init.def, is
then produced incorporating (again: from here onwards you should use the version that
has already been prepared for you). The updated model is fitted, and the results and
diagnostics are viewed (command summary (OccModel4,tables=NULL)).

Look carefully at the Occurrence frequencies vs forecasts now. Notice that with
this new model, there are 6 + 563 + 2452 = 3021 cases for which the modelled probability
of precipitation exceeds 0.8; and the observed proportion of ‘wet’ days is between 0.87
and 1 for these groups of cases. If you check the summary table from OccModel3, you
will find that the two outlying sites between them contributed 3021 observations to the
database. Thus, the records from these sites suggest that precipitation occurs on around
90% of days. This is clearly wrong (perhaps the observers at these stations tend to report
only non-zero precipitation values?). The data from these two sites must therefore be
considered unreliable, and we are justified in discarding them.

The easiest way to discard the sites is to remove them from the siteinfo object using
the next two commands in the script. Now, Rglimclim will ignore their data because it no
longer recognises them in the data file (we do not need to change the data file itself). Next,

2 SESSION 1: BUILDING A WEATHER GENERATOR 23

Model 3 is refitted (this was the model that did not include the ‘outlying site indicator’)
and the result is stored as OccModel5. The summary and plot commands now suggest
that there are no longer any very large mean Pearson residuals — although most of them
are still significantly different from zero according to the model.

Now we can look at the effect of topography again. The next few commands recompute
the mean Pearson residuals at each site, for the new model; and plot them against each of
the topographic indices. We might ask: what is the relevant spatial scale for each of the
main categories of topographic predictor (altitude, topographic variability and slopes)?
From the correlations on the plots, the mean Pearson residuals are (slightly) more strongly
correlated with the station altitude than with any of the altitude indices derived from
the GTOPO30 data (notice also that the correlation is now positive, whereas it was
negative when the outlying stations were included). Also, for topographic variability the
correlations are highest at the 1000km? scale, and for the slope variables the correlations
are highest at the 10km? scale. So we add these four site attributes, to obtain OccModel6
(note that in the updated version of siteinfo, the required attributes are numbers 3, 10,
11 and 14 — type siteinfo to verify this). When we print (OccModel6), the north-south
slope seems insignificant. However, we will keep it in the model for the moment, because
it may become important in conjunction with circulation indices later on.

The summary and plot commands for OccModel6 suggest that the mean Pearson
residuals at each site are generally small in absolute value, although many of them remain
significantly different from zero (note that the circles in the plot seem larger than before,
but this is an artefact of the way that Rglimclim tries to find a sensible way of scaling the
circles, not always successfully — do not worry about this, therefore!%).

We have captured a reasonable amount of the systematic regional structure now; and
our modelling has also revealed some data errors. Next, we look at autocorrelation.

2.4.5 Accounting for autocorrelation

The modelling of autocorrelation (i.e. temporal, rather than spatial dependence) is
achieved in Rglimclim by including previous days’ values as covariates in a model. This
poses several questions, for example: how many previous days’ values should be included?
Should we transform them? If so, how? Should we consider previous days’ values at each
site individually, or is it better to use averages over some neighbourhood of each site?

Many weather generators use a first-order Markov chain to represent autocorrelation
in precipitation occurrence. Moreover, in simple weather generators it is common to
fit separate Markov chains in different seasons, or in different months of the year, so
that the autocorrelation varies seasonally. In a GLM, a first-order Markov structure
can be incorporated by including, for each observation, a covariate taking the value 1 if
precipitation occurred on the previous day at the same site, and zero otherwise. Seasonal
variation can be incorporated by defining an interaction between the ‘previous day’ and
‘seasonal’ covariates.

The initial definition file for our next model, OccModel7aInit.def, illustrates how

SIf you want to feel happier, set scale=1 in the plot command ...

2 SESSION 1: BUILDING A WEATHER GENERATOR 24

this is defined in Rglimclim:

SRS JC S T N T NN

0.4640 21 Daily seasonal effect, cosine component 9
0.2805 22 Daily seasonal effect, sine component 10
-0.1089 23 Daily half-year cycle, cosine component 11
-0.1871 24 Daily half-year cycle, sine component 12
0.0000 1 3

0.7195 1 3 2-way interaction: covariates 1 and 3

0.0000 9 13
0.0000 10 13
-9.5000 1

[y

OParameter 1 in transformation of covariate 1

Note the following:

1.

There is a new ‘component 4’ row (recall that component 4 indicates a daily effect).
The first code is 1 and the second code is 3. Table 2 in the manual shows that the
‘1’ indicates a value taken from 1 day previously; and that in this case, the second
code selects a transformation. Table 4 (page 18 of the manual) now tells us that
transformation 3 corresponds to an indicator taking the value 1 if the previous day
was wet and 0 otherwise.

There are two new ‘component 5 rows for defining two-way interactions. In the first
instance we will include interactions between the previous day’s occurrence indicator
and the main sine and cosine terms for seasonality (excluding the harmonics). The
interpretation of this is that the coefficient of the previous day’s occurrence itself
follows a sinusoid through the year. To define these interactions, we must define
the indices of the interacting main effects. At this point, notice the numbers that
Rglimclim has inserted at the end of each line when writing model definition files: we
have not inserted any new lines before the covariates that we’re currently interested
in, so these are the required indices. Thus, the cosine and sine components of
seasonality are covariates 9 and 10; and the new ‘lagged’ covariate is number 13. So
we add interactions between covariates 9 and 13, and 10 and 13, to the model.

Read the definition file and inspect the result (print (OccModel7a.init)). Notice the

line

13

I(Precipitation[t-11>0) 0.0000

Rglimclim constructs informative covariate labels from the model definitions: read them
carefully to check that your definitions are correct!

The next command fits the model, as usual, to produce OccModel7a. However, this
time there is a difference: notice the argument nprev.required=4. This is because we
will soon compare models containing 2, 3 and 4 previous days’ values, to find out how

many

previous days’ values are needed. However, to compare models formally they must

2 SESSION 1: BUILDING A WEATHER GENERATOR 25

be fitted to the same data. A model containing 4 previous days’ values can only be fitted
to observations with 4 previous days’ values available: by specifying nprev.required=4,
we ensure that all of our models are fitted to this subset of the observations.

Before looking at the fitted model, we can explore some other options for modelling
autocorrelation. For example: instead of considering the previous day’s value individually
at each site, perhaps it would be better to consider the average of these previous day’s
indicator variables (i.e. the proportion of sites experiencing rain)? To implement this
(definition file OccModel7bInit.def), just change the second code in the ‘previous day’
line of the model definition file from 3 to 13 (see Table 4 in the manual again). This time,
when you read the model definition you will see a warning message — this is directed
at users of the original GlimClim package (the predecessor to Rglimclim) so we should not
worry about it. Check the definition (print(OccModel7b.init)) and fit the model.

A third possibility is to consider a weighted average of the previous days’ indicator
variables, where the weights decay exponentially with distance from the site of interest.
This formulation in fact includes both of the previous models as special cases: if the decay
rate is zero then the weights are all equal and we recover the unweighted average used
in OccModel7b, whereas as the decay rate increases indefinitely then, ultimately, all of
the weight is concentrated on the site of interest and we recover OccModel7a. Rglimclim
will find the maximum likelihood estimate of the decay rate, along with all of the other
model parameters. This is a challenging numerical problem, however, and it is helpful to
provide good starting values. Fortunately, these can be taken from OccModel7b, because
this corresponds to a model with a decay rate of zero. Accordingly, the definition file
OccModel7cInit.def is created from OccModel7b, with 23 instead of 13 to choose the
“exponentially weighted average” transformation, and with an additional line

7 0.0000 13 1 1

in the ‘nonlinear parameters’ section (component 7). The parameter here is the expo-
nential decay rate (see Table 5 on page 21 of the manual), and is set to zero because
this corresponds exactly to the fit of OccModel7b. The ‘13’ refers to the covariate num-
ber (notice that the ‘previous day’ covariate is number 13) and the next ‘1’ indicates
the first parameter in the nonlinear transformation — in exactly the same way that we
previously defined the limits of the Legendre polynomial representations of latitude and
longitude. The final ‘1’ is new, however: this tells Rglimclim to estimate this nonlinear pa-
rameter from the data (the corresponding code is zero for all of the Legendre polynomial
parameters, so Rglimclim considers these to be fixed and known).

In the specimen script, the read.modeldef () command for OccModel7c includes a new
argument: 01dGlimClim.warning=FALSE. This suppresses the annoying warning message.

When you inspect the new model definition (print (OccModel7c.init)), you will see a
message telling you that the distance-dependent weights are based on distances calculated
from longitude and latitude (these are the first two attributes defined in siteinfo, corre-
sponding to the coord.cols argument when we used make.siteinfo earlier). Rglimclim
always computes inter-site distances in this way.

GLCfit () for this model is noticeably slower than before, and it requires many more
iterations to converge. This is caused by estimation of the decay rate in the weighting

2 SESSION 1: BUILDING A WEATHER GENERATOR 26

scheme, which enters nonlinearly into the linear predictors {ng)} and complicates the
numerical optimisation problem considerably.

We have now fitted three different models incorporating dependence on the previous
day’s precipitation occurrence, and also allowing the strength of this dependence to vary
seasonally. Which of these models provides the best fit to the data? One way to answer
this is to look at the independence log-likelihoods for the fitted models: the logLik()
command can be used to do this, as illustrated in the next three script commands. The
log-likelihood increases considerably from OccModel7a to OccModel7b, and again from
OccModel7b to OccModel7c. 0OccModel7a and OccModel7b have the same number of
parameters, so we can safely conclude that it is better to model autocorrelation using
the proportion of wet sites than using the simple Markov structure. The third model has
one extra parameter, so some increase in log-likelihood is to be expected. However, an
increase of around 1626 is much bigger than would normally be expected for the addition
of a single parameter; and, moreover, if you type print (OccModel7c) you will see that the
estimated decay rate is 0.5538 with a (robust) standard error of 0.0209. An approximate
95% confidence interval for the decay rate is therefore 0.55 £ (2 x 0.02) = (0.51,0.59)
which excludes zero. There seems to be convincing evidence, therefore, that the decay
rate is not zero; and hence we should prefer 0ccModel7c¢ over OccModel7b.

Having established that autocorrelation is most plausibly modelled using a weighted
average of previous days’ values, we now turn to the question: how many previous
days’ values? We can answer this by fitting models involving two (OccModel7d), three
(OccModel7e) and four (OccModel7f) previous days’ values. We retain the weighted aver-
age for all of these; note that Rglimclim uses the same decay rate for each previous day, so
that the ‘decay rate’ parameter only needs to be defined once. Experience also suggests
that there is limited evidence for interactions between autocorrelation and seasonality at
lags higher than one day; so these interactions are not considered here. However, it is
now important to give descriptive titles to the models (you may have noticed that all
of our definition files so far contained the text CONSTANT-ONLY MODEL, which was a bit
lazy). To see why, fit all of the models and then run the next command in the script:
anova(OccModel7c,0ccModel7d,0ccModel7e,0ccModel7f). The result is as follows:

Comparison of nested models

Model 1: MODEL WITH WEIGHTED AVERAGE OF 4 PREVIOUS DAYS’ PRECIP OCCURRENCE
Model 2: MODEL WITH WEIGHTED AVERAGE OF 3 PREVIOUS DAYS’ PRECIP OCCURRENCE
Model 3: MODEL WITH WEIGHTED AVERAGE OF 2 PREVIOUS DAYS’ PRECIP OCCURRENCE
Model 4: MODEL WITH WEIGHTED AVERAGE OF 1 PREVIOUS DAY’S PRECIP OCCURRENCE
Resid DF DF2-DF1 LogL LLR p Robust LLR Robust p
M1 196807 -103185.1
M1 vs M2 196808 1 -103197.9 12.725 4.5389e-07 2.129 0.039057
M2 vs M3 196809 1 -103365.0 167.109 < 2.22e-16 26.715 2.6787e-13
M3 vs M4 196810 1 -103454.3 89.342 < 2.22e-16 12.37 6.5636e-07

This table provides a formal comparison of nested models. The models are ordered

2 SESSION 1: BUILDING A WEATHER GENERATOR 27

in decreasing order of complexity and, at each stage, a hypothesis test is performed: the
null hypothesis is that the data were generated from the simpler of the two models. The
test is based on the difference in the maximised log-likelihoods at each stage (column
LLR in the output). In the absence of residual inter-site dependence, standard theory can
be used to derive a p-value for the test (column p), taking into account the number of
additional parameters in the more complex model (column DF2-DF1). However, in the
present setting it is likely that there is unmodelled inter-site dependence: therefore we
should adjust the difference in log-likelihoods (Robust LLR) to obtain an adjusted p-value
(Robust p). The adjustments use the theory developed in 7.

The conclusions from this analysis are:

e The test for M3 versus M4 leads to a convincing rejection of M4, with a robust p-value
of 6.56 x 10~": this suggests that more than one previous day’s value is needed in
the model (now you see the reason to provide descriptive titles for the models!).

e The test for M2 versus M3 leads to an overwhelming rejection of M3, similarly: more
than two previous days’ values are needed.

e With a robust p-value of around 0.04, the test for M3 versus M4 leads to a rejection
of M3 at the 5% level. Bear in mind, however, that we are fitting models to around
200,000 observations. With a dataset of this size, very small effects, that are of no
practical relevance, can appear statistically significant. Experience suggests that
for a dataset of this size we probably should not get too excited by p-values unless
they are smaller than about 1073, unless there are good reasons to retain the corre-
sponding terms in the model (e.g. the potential for a north-south slope variable to
interact with circulation indices, as noted above).

So: at this stage, OccModel7e seems to be the model of choice. Examine the estimated
coefficients, the summary, and the plots. The script provides some comments on the
results — do you agree with them?

2.4.6 Finalising the baseline occurrence model

We have now found reasonable representations of seasonality, regional variation and auto-
correlation. Notice, however, that OccModel7e was fitted only to observations for which
four previous days’ values were available: now that we have decided to use only three pre-
vious days’ values, we could perhaps increase the precision of our estimates by refitting
the model to take advantage of some observations that were excluded from the previous
fit. At the same time, we can add a few additional interaction terms, representing the
possibility that both the seasonal cycle and the ‘lag 1 autocorrelation’ coefficient may
vary over the study area (we will consider only the linear polynomial terms in longitude
and latitude here, to keep things relatively simple). Thus we want interactions between
the covariate pairs (1,9), (1,10), (2,9), (2,10), (1,13) and (3, 13).

There is a further critical feature that is missing from our model. So far, except for
the calculation of robust standard errors and adjusted likelihood ratios, our modelling

2 SESSION 1: BUILDING A WEATHER GENERATOR 28

has not addressed the issue of potential dependence between sites (you may have noticed,
in the software output, that the sites are assumed to be independent). This will cause
problems if we try and simulate precipitation sequences from the fitted model in its current
form, since the simulated sequences from each of the sites will be independent except for
dependence induced via the covariates. This is probably unrealistic.

Rglimclim offers several alternative ways to model inter-site dependence: some of these
are specific to precipitation occurrence modelling. In the present setting, the study area
is fairly large and it is therefore likely that dependence between nearby sites will be much
stronger than dependence between distant sites.” In such situations, it is convenient to
model the dependence via correlated latent Gaussian variables as described on page 9 of
the Rglimclim manual; and, in the first instance, it is often sensible to start by considering
the inter-site correlations to decay exponentially with inter-site distance. Referring to
Tables 1 and 7 of the manual, this correlation structure is defined by adding the line

10 0.0000 3 1

to the end of the definition file. The component value of 10 refers to the residual inter-
site dependence; the parameter value of zero is an initial value (which is ignored by the
software, in fact); the ‘3’ selects the exponential correlation function in Table 7; and the
‘1" indicates that we are defining the first (and only) parameter in this function.

The required definition file is 0ccModel8Init.def. Read this, check the definition and
fit the model. Notice the argument cor.file="0OccModel_Corr.dat" to the GLCfit ()
command this time: the inter-site correlation estimates for the latent Gaussian variables
will be written to this file (Rglimclim tries not to store large objects internally, because this
can cause memory problems within R itself). The correlations take some 30-40 seconds
to estimate. You may notice a warning, telling you that the observed joint occurrence
frequency is incompatible with the model at one pair of sites: this is probably unimportant
(if you want to know more about this, see Appendix E.3.1 of the Rglimclim manual).

Finally, inspect the fitted model, the summary, and the residual plots. There is one ex-
tra plot this time (plot (OccModel8,which.plots=5,plot.cols=c("blue","purple"))),
to check the fit of the inter-site dependence model. The ‘data points’ in this plot repre-
sent the estimated correlations between latent Gaussian variables at each pair of sites; the
intensity of shading indicates the sample size available for each correlation estimate, with
larger samples corresponding to more intense shading. The fitted curve seems to provide
a reasonable fit overall. The only matter for concern is a group of negative correlations
which, on inspection, are all associated with a single station. If we had more time, per-
haps we would investigate this further. For the moment however, we will take this as our
final ‘climatology’ model for precipitation occurrence.

2.5 Models for precipitation intensity and temperature

You have now seen how to approach the model-building process in a structured and in-
formed way, using the Rglimclim diagnostics to suggest model improvements and identify

“This contrasts with the situation in very small catchments, where inter-site dependence is often
uniformly high.

2 SESSION 1: BUILDING A WEATHER GENERATOR 29

potential data errors. Although this process seems intimidating at first, with experi-
ence it becomes relatively straightforward: an experienced user can build such a model
in one or two hours. You will be pleased to learn, however, that we will not repeat
the same model-building process to develop ‘climatology’ models for precipitation inten-
sity and temperature: these have already been prepared for you and are stored in files
Intensity.rda and Temperature.rda. Moreover, the final occurrence model is stored in
file Occurrence.rda. If you are interested, the sequence of analyses used to build these
models is provided in the remainder of the ModelBuilding.r script.

We do not need ModelBuilding.r any more, unless you want to refer to it to check
the syntax for some of the commands. If you want a record of your commands from here
on, you should probably start a new script (“New File” on the “File” menu in RStudio).

At this stage you may also find it helpful to empty your R workspace and start afresh.
You don’t have to do this — it is just to remove a large number of objects that you no
longer need, but you may want to keep them anyway. The command to empty your R
workspace is rm(1ist=1s()). You can then use

load("Occurrence.rda")
load("Intensity.rda")
load("Temperature.rda")
load("Topography.rda")

to restore all of the objects that you will need. These are OccModel8 (the precipitation
occurrence model that we have just developed), IntModel5 (a precipitation intensity
model based on gamma distributions), TempModel8 (a temperature model based on normal
distributions), and our old friends siteinfo, topo.data, topo.lats and topo.longs.

Look at models IntModel5 and TempModel8, to see their structure. It is similar to
the structure of the precipitation occurrence model, although there are differences in the
details (e.g. autocorrelation is modelled using different transformations of previous days’
values). Note in particular that TempModel8 contains two sets of covariates, one for the
mean and one for the variance (see equations (3), (6) and (7)).

You should also generate some of the residual plots for IntModel5 and TempModel8,
partly to reassure yourselves that the models provide a reasonable fit but also to give
you an idea of what still needs to be done. In particular, notice the time trends in some
of the annual mean residuals — hopefully these can be linked to changes in large-scale
atmospheric predictors. Notice also the seasonal structure in the standard deviations of
the precipitation intensity residuals — this is potentially problematic, but Rglimclim (like
many other stochastic downscaling methods) currently is unable to resolve it.

There is one residual plot that we did not see when building the precipitation oc-
currence model, because it is only appropriate for continuous variables. It is a quantile-
quantile plot for checking distributional assumptions:

par (mfrow=c(1,2) ,mar=c(4,3,4,2) ,mgp=c(2,0.75,0) ,1lwd=2)

plot (IntModel5,which.plots=4,plot.cols=c("blue","black"),titles=FALSE)
title(main="Q-Q plot of standardised residuals\n(precipitation intensity model)")
plot(TempModel8,which.plots=4,plot.cols=c("blue","black"),titles=FALSE)

2 SESSION 1: BUILDING A WEATHER GENERATOR 30

title(main="Q-Q plot of standardised residuals\n(temperature model)")

Notice the use of titles=FALSE in the plot commands: this suppresses the default
plot titles, allowing the user to customise them if desired. The plot for the precipitation
intensity model shows that the gamma distributions provide an an astonishingly good fit
to the standardised residuals; the plot for the temperature model shows some lack of fit
in the lower tail, but otherwise seems reasonable.

2.6 Building a bivariate model

Having built multi-site models for precipitation and temperature separately, our next
task is to link them to produce a bivariate model that (hopefully) can reproduce the
dependence between the two variables. In Rglimclim, this is done by including one of the
variables as a covariate in the model(s) for the other. The justification for this is that
if R; and T; denote vectors containing respectively the precipitation and temperature
values for all sites on day ¢, then the joint density (pdf) of R; and T can be factorised as

frr(r,t)=fr(r) frr(t(R=1) oras frx(r,t)=fr(t)frRerxT=t), (9

where the vertical bars denote conditional distributions. Our existing models for pre-
cipitation and temperature in fact define the marginal distributions fgr (r) and fr (t)
respectively — or, rather, they serve as approximations to these marginal distributions:
if we can model one of the conditional distributions therefore (e.g. via a GLM), we have
a fully bivariate model.

The next, question, then, is: which way round should we do it? Should we treat
precipitation as the “primary” variable and extend the temperature model to include
(functions of) precipitation as a covariate, or should we treat temperature as the “pri-
mary” variable and extend the precipitation models? In almost all of the literature on
weather generation, precipitation is treated as the primary variable; but this is almost
certainly because when weather generators were first developed in the early 1980s people
knew how to regress temperature on precipitation (because it has something like a normal
distribution) but they did not know how to regress precipitation on temperature. GLMs
remove this constraint, but in doing so they force us to confront the question.

You might think that the question is academic, because both equalities in (9) are
exact and lead to the same joint distribution. This would be true if our models were
perfect; but they are not. As noted above, they are approximations, and it is possible
that the approximation error will be smaller (and the weather generator performance
correspondingly better) in one case than the other. Unfortunately therefore, we must
think about it. Relevant considerations include:

e Are there physical considerations that suggest that one variable acts as a (direct or
indirect) influence on the other? If so, the influencing variable should be considered
as the primary variable, because statistical models are invariably more robust if their
structure reflects the mechanisms governing the phenomena that they represent. In
this particular instance, we could argue:

2 SESSION 1: BUILDING A WEATHER GENERATOR 31

— that precipitation influences temperature indirectly, particularly in winter, be-
cause winter precipitation is associated with extensive cloud cover and warmer
temperatures; or

— that temperature influences precipitation directly in summer, because summer
precipitation in this region is dominated by convective events and convection
is enhanced on warm days.

This does not help.®

e Are there differences in data availability for the two variables? If one variable has
many more observations than the other, then it may be pragmatic to treat this as
the primary variable — because when we build a GLM we must (usually) discard
any observation for which the covariate values are unavailable. If we treat the ‘data-
poor’ variable as the primary variable therefore, we must subsequently discard many
observations from the ‘data-rich’ variable, leading to an overall loss of precision.”

Sometimes, this principle does help. In the current example, however, it doesn’t:
both temperature and precipitation have around 200,000 observations available.

2.6.1 Your task

To resolve this question, we are going to carry out a scientific experiment. Work in groups
of 24 people each. Half of the groups will use temperature as the primary variable, and
the remainder will use precipitation. Ultimately, we will compare the models in terms of
their validation performance.

If you take temperature as the primary variable, then your task is to modify the
precipitation occurrence and intensity models to incorporate (a function of) temperature
as an additional covariate. Conversely, if you take precipitation as the primary variable,
your task is to modify the temperature model (possibly in both the mean and variance
components) to incorporate (functions of) precipitation as additional components.

In all cases, the first step is to add an extra ‘component 4’ line to the model definition,
with the following generic format:

4 0.0000 0 XX Y

where XX defines the covariate transformation (set it to zero for an untransformed co-
variate) and Y is either 1 or 2 depending on whether the covariate is precipitation or
temperature. Note that the first ‘code’ is zero, indicating a covariate value on the same
day as the predictand. If your chosen transformation requires additional parameters (e.g.
an exponential decay rate) then, of course, you will also need to update the ‘nonlinear
parameters’ section of the model definition in order to define this parameter.

8] have had many conversations with climate scientists on this topic. We have never got further than
this!

9In Rglimclim, the allow.incomplete.averages argument to the GLCfit () command offers one pos-
sible solution to this problem, at least when the covariate enters as a (possibly weighted) average over all
sites. See help(GLCfit) for details.

SESSION 1: BUILDING A WEATHER GENERATOR 32

Here are some hints to help you with the task (see also Section 4 of the manual):

e Add the extra component after all of the other ‘component 4’ lines in the model
definition. This way, you won’t accidentally change the numbering of the other
covariates (which could cause problems with interactions and nonlinear parameters).

e Use what you have learned about Rglimclim to inform your modelling: use the
model outputs, diagnostic information, formal model comparisons and your scien-
tific intuition. You may find it particularly helpful to review the way in which we
identified an appropriate choice of structure for the previous day’s covariate in the
precipitation occurrence model: the present task is very similar.

e Think about the processes that are responsible for precipitation-temperature associ-
ations. These may help you to identify plausible transformations in your modelling.
They may also suggest the inclusion of interaction terms: for example, the associ-
ation between temperature and precipitation tends to be positive in winter (clear
skies imply low temperature and low precipitation) but possibly negative in summer.

e Be structured and methodical! Don’t be afraid to try several models; but do ap-
proach them in a systematic way, and make sure that you name the models,
and their definition files, in a way that will help you to follow the struc-
ture later.

e Keep things as simple as possible. Thus, if you want to represent a seasonally varying
effect, just work with the main sine and cosine components; similarly, interactions
with site effects should be kept fairly simple. Interactions involving previous days’
values should be treated with extreme care, particularly if the interacting variable
shows strong time trends — such interactions can cause serious problems when
simulating from the fitted model, because they can take the coefficients outside the
range within which the model is stochastically stable.

e If you are taking temperature as a primary variable, you must consider its po-
tential influence upon both precipitation occurrence and intensity. You therefore
need to know how to modify the commands you have learned so far, to fit a pre-
cipitation intensity model. This is easy: just use model.type="gamma" instead of
model.type="logistic" in any read.modeldef command.

e Similarly, if you are taking precipitation as a primary variable then you must con-
sider its potential influence on both the mean and variance of the temperature
distribution. This is slightly more difficult, because the temperature model requires
two model definition files (one each for the mean and variance). If you wanted to
generate some definition files from the existing TempModel8, you could go

write.modeldef (TempModel8,c("TempModel9_MeanInit.def","TempModel9_Varinit.def"))

Then after editing the mean and / or variance definition files, you must call
read.modeldef twice, each time using model.type="normal-heteroscedastic"
and specifying which.part="mean" or which.part="dispersion" as appropriate.
For example:

2 SESSION 1: BUILDING A WEATHER GENERATOR 33

TempModel9_Var.init <- read.modeldef ("TempModel9_VarInit.def",
model.type="normal-heteroscedastic",
which.part="dispersion",siteinfo=siteinfo,
var.names=c("Precipitation","Temperature"))

Then, to fit the model, you must modify the call to GLCfit () slightly, for example

TempModel9 <- GLCfit(TempModel9_Mean.init,dispersion.def=TempModel9_Var.init,
which.response=2,siteinfo=siteinfo,
data.file="NorthIberiaPrecipTemp_1960-1990.dat",
diagnostics=1,nprev.required=-1,
cor.file="TempModel_Corr.dat")

Notice here:

— The use of dispersion.def=TempModel9_Var.init to specify the structure of
the variance model

— The use of which.response=2, to specify that we are modelling the second
variable in the data file (this argument was not needed when modelling precip-
itation occurrence, because by default Rglimclim assumes that we are modelling
the first variable in the file).

These normal-heteroscedastic models take much longer to fit than the precipitation
models. This is because the algorithm iterates between fitting a mean model with
weights determined by the variance model, and fitting a variance model to residuals
from the mean model. For details, see Appendix C.1.2 of the manual.

Good luck!

2.7 Incorporating atmospheric predictors

You have now built a bivariate, multi-site weather generator. The only thing missing
is some way of including a climate change signal — we are not downscaling yet! For
this final step, we must include additional covariates representing large-scale atmospheric
structure. In Rglimclim, these are referred to as external covariates and are provided in
separate data files.

Recall from Section 1.1.3 that there are two sets of atmospheric predictor data avail-
able to us: a set of circulation indices, and a set of weather classification information.
These represent two rather different approaches to downscaling. Again, we will use this
workshop to compare them: half of the groups will use the circulation indices as atmo-
spheric predictors, and the remainder will use the weather classifications. The subsequent
validation will then tell us which approach is the most effective for this region.

Daily time series for all of the predictors are provided in file DailyPredictors.dat.
Click on the filename to open it in RStudio (it will issue a warning message about the
file size, but continue anyway). Scroll down to lines 42-53 of the file, where you can

2 SESSION 1: BUILDING A WEATHER GENERATOR 34

see that it contains data on 11 variables: the first six are the circulation indices (‘Z8’ in
the descriptions refers to region Z8 from ?) and the remaining five define the weather
classification information. A few lines further down, you see

ok ok ok skok ok ok ok ok skokok ok kkkoskok ok ok kkkkEND OF PREDICTOR DEFTNTIT TON sk sk sk ok ok ok ok sk sk sk ok ok ok ok ok sk ok ok ok ok ok skok ok ok
19570901 16.4294 -1.1436 ... 0.0000 0.0000 1.0000 0.0000 0.0000

This first row of data is for 1st September 1957. The first six fields after the date
represent the the values of the circulation indices, and the remaining fields encode the
weather classification: the value of 1 in the ninth field tells us that this day belongs to
the “S circulation” weather state. This use of 0/1 variables to encode categorical data is
common in statistical modelling.

There is also a file MonthlyPredictors.dat, which contains monthly averages of the
values in DailyPredictors.dat (note that monthly averages of the 0/1 weather state
variables are the proportions of days in each state, and can be interpreted as ‘circulation
tendencies’ for each month). In real downscaling applications, it is often helpful to work
with monthly rather than daily predictors — apart from anything else because climate
models do not agree on the number of days in a year, but they do agree that there are 12
months. However, we will just focus on the daily predictors in these sessions.

2.7.1 Your task

You must now update your bivariate model to incorporate EITHER the circulation indices
OR the weather state indicators (but not both). You need to decide which variables to in-
clude, and in which models (precipitation occurrence, precipitation intensity, temperature
mean, temperature variance). The predictors are all at a daily scale, so once again they
can be defined to Rglimclim by adding extra ‘component 4’ lines to the model definition,
along with appropriate interaction terms if necessary. On page 16 of the manual, Table 2
tells us that codes of 51 upwards correspond to ‘external’” daily predictors. So, to add all
of the circulation indices to a model, just include the lines

4 0.0000 51
4 0.0000 52
4 0.0000 53
4 0.0000 54
4 0.0000 55
4 0.0000 56

to the corresponding definition file (do not attempt to experiment with lagged values of
the predictors, this will make your life too difficult!).

If you are using weather states instead of circulation indices, you might think that you
should include lines

4 0.0000 57
4 0.0000 58
4 0.0000 59

3 SESSION 2: TESTING THE GENERATOR 35

4 0.0000 60
4 0.0000 61

to the definition file. This will produce an error when you try and fit the model, however.
The reason is that the weather state variables are perfectly linearly dependent: they
always sum to 1, and therefore you don’t need all of them. You must therefore choose
one of the states as a ‘reference state’, and omit it from the model.

A suggested strategy for adding these ‘external’ predictors to your models is: start by
adding all of them, together with any interactions that you think could be important /
useful. Fit the resulting model, and examine the output to see if there are any terms, or
groups of terms, that appear insignificant. If so, delete them (make sure that you correct
any changes to the covariate numbering, in the ‘interaction’ and ‘nonlinear parameters’
sections of the definition files), refit the model and then use the anova() command to
check that the deletions were justified.

When you have finished, save your models to the file IberiaWG.rda file using the
save () command, for example

save (OccModel8, IntModel5, TempModel8,file="IberiaWG.rda")

3 Session 2: testing the generator

In this second practical session, we will use our weather generators to simulate multisite
daily sequences of temperature and precipitation, and we will assess their performance.

You might think that we assessed the model performance already, by considering
residual plots and other diagnostics. However, those diagnostics were for checking the
distributions of each variable conditional on all of the other covariates in the models —
in particular, the previous days’ weather variables and the atmospheric predictors, which
change from day to day. In applications, we are usually interested in the overall, marginal
properties of the variables. For weather generators of realistic complexity, it is not possible
to deduce the marginal properties so we must use simulation instead. Some of the smaller
model deficiencies may become more important when simulating; conversely, some of the
larger errors (such as the failure of the models to capture the full range of seasonality in
the variance of precipitation intensity) may be less serious in the marginal distributions.

Once again, there is an R script for use in this session (ModelTesting.r), in your
PRACTICALS/ directory. Start up RStudio, change to the PRACTICALS/ directory and
open this script. Run the first two commands, which load Rglimclim along with the file
IberiaWG.rda that you saved at the end of the first session. The remaining commands
in the script use the univariate climatological weather generators OccModel8, IntModel5
and TempModel5. As you work, adapt the script to use your own models.

3 SESSION 2: TESTING THE GENERATOR 36

3.1 Introduction to simulation

We will start by producing 20 simulations for the 10-year period 1970-1979, at all of the
sites in the study area — or, more precisely, at all of the sites defined in the siteinfo
object. Obviously, data from this period were used to fit the models, so this is not a
‘genuine’ test of their performance. However, if this initial simulation exercise reveals any
serious problems, we have a chance to refine the models before attempting a validation
using data from a period (1991-2002) that was not used to fit the models.'

Simulation is done using the GLCsim() command:

set.seed(2000)
5im1970t01979 <- GLCsim(list(list(Occurrence=0ccModel8,Intensity=IntModel5),
TempModel8),
nsims=20,start=197001,end=197912, impute.until=196912,
which.regions=0:1,simdir="./SimFiles",
file.prefix="Sim1970-1979")

The first of these commands the random number generator to a repeatable initial state,
so that the results can be reproduced exactly.!'! The second carries out a simulation and
stores the information in an object called sim1970t01979. Note the following:

e The first argument to GLCsim() is a list containing two objects, each defining a
model for a single variable (precipitation and temperature respectively). The first
object, defining the precipitation model, is itself a list (!) containing the occurrence
and intensity models, named explicitly as Occurrence and Intensity. This naming
is important: without it, GLCsim would try to perform a multivariate simulation in
which one variable was modelled using OccModel8 and the other using IntModel5.

e The next three arguments nsims, start and end are self-explanatory. Start and
end dates are given in the form YYYYMM where YYYY is the year and MM is the month.
The simulation starts on the first day of start and ends on the last day of end.

e The argument impute.until is used to control the imputation behaviour of the
routine. This is discussed in more detail below.

e The routine will optionally generate an output file for each simulation, containing
monthly series of average precipitation and temperature for a selection of subregions
that are defined within the site information databases. The which.regions argu-
ment controls this selection. By default, the routine generates these monthly series
only for region 0 (i.e. the entire area); here we request monthly series for subregion
1 as well (you may remember that this was defined to include all of the ‘official’
VALUE sites, early in the first session).

10Tn real applications we would probably produce more simulations for the entire 1960-1990 calibration
period. However, the output files are large, and the simulation process is not instantaneous, so we will
start with a small number of short simulations.

1 Actually, there is a small bug in Rglimclim which means that you only get ezactly the same results if
you restart R and run the same commands again. I know, this is annoying, but I haven’t found a way of
fixing it (it relates to the interface between R and the underlying Fortran code).

3 SESSION 2: TESTING THE GENERATOR 37

e The routine will also generate a daily output file for each simulation, in the same
format as the original data file (NorthIberiaPrecipTemp_1960-1990.dat) that has
been used throughout the modelling process. Together with the monthly output files
therefore, this simulation will generate 40 output files in total. They will be stored
in the subdirectory defined by the simdir argument, and the output file names will
be generated automatically. The file.prefix argument allows the user to specify
a prefix for each output file name; we’ll see how this is used, below.

Note that the sim1970t01979 object does not contain the simulated data: it merely
contains information about what was simulated and where the data are stored. To see
this, type sim1970t01979:

Object of class GLCsim:

Variables taken from data file NorthIberiaPrecipTemp_1960-1990.dat
Variables simulated:

1. Precipitation (model type: logistic-gamma)

2. Temperature (model type: normal-heteroscedastic)

Simulation period: 1/1970 to 12/1979
No imputation performed
20 realisations generated

Output files generated: daily and monthly

Daily output written from 1/1970 to 12/1979

Monthly summaries written for the following regions:

0 Northern Iberia

1 VALUE stations

Output directory: C:/[output truncated] /PRACTICALS/SimFiles
Prefix for output filenames: Sim1970-1979

Next, use command list.files("SimFiles/") to inspect the output files that have
been generated. Notice how the file names have been automatically generated, using the
file.prefix argument supplied to the GLCsim() routine.

Unfortunately, the daily simulation files are too large for the RStudio editor. However,
we can look at the first few lines of one of them:

read.fwf ("SimFiles/Sim1970-1979_Daily_SimO1.dat",widths=c(4,2,2,4,6,6),n=10)

The read.fwf () command reads files with fixed column widths. It is very slow when
you need to read large files (if you need to read the entire file, use read.GLCdata()), but it
is useful when you only want a few lines. The variables are year, month, day, 4-character
site code, precipitation and temperature. You will all get different results (presumably)
because you are all using different models — and perhaps different random number seeds.

Now open the monthly file SimFiles/Sim1970-1979_Monthly_Sim01.dat (this will
open in the RStudio editor). Each line contains 28 values: the first two are the year

3 SESSION 2: TESTING THE GENERATOR 38

and the region code (note that 1970 appears twice, once for region 0 — representing an
average over all of the stations in siteinfo — and once for region 1 — representing an
average over the VALUE stations). The remaining columns are in groups of 13. Each
group represents one variable, giving 12 monthly means and an annual mean.

The monthly output files are small and easy to read. Potentially, they allow impacts
modellers to identify simulation periods that might be particularly interesting. For exam-
ple, a hydrological model might be computationally intensive to run: a hydrologist may
therefore wish to select ‘wet’ or ‘dry’ simulation periods to explore the range of hydro-
logical responses that might be expected. The monthly files provide a convenient way of
identifying such periods in the simulation output.

Close the monthly output file before proceeding.

3.1.1 Multiple imputation

The daily (and possibly monthly) simulation files can now be used for input into impacts
models. However, we should first assess the credibility of the simulations. This can be
done by comparing their properties with those of observations. However, the observations
are incomplete: there are some missing values, so the ‘observed’ properties are subject to
uncertainty. This can be assessed by generating additional simulated sequences in which
the missing values are sampled from their conditional distributions given the available ob-
servations, and by calculating properties of interest for each of these additional sequences.
The procedure is known as multiple imputation, and the GLCsim() routine performs it
automatically unless prevented from doing so by the impute.until argument. So, to
produce 3 imputations of the missing observations in our data set:

0bs1970t01979 <- GLCsim(list(list(Occurrence=0ccModel8,Intensity=IntModel5),
TempModel8),
nsims=3,start=197001,end=197912,
which.regions=0:1,simdir="./SimFiles",
file.prefix="0bs1970-1979")

The GLCsim() call is exactly the same as before, except that:

e The impute.until argument is omitted so that the software will condition on all
available observations throughout the simulation period (note that in the earlier
call, impute.until defined a date prior to the start of the simulation, in order to
prevent the routine from doing imputation).

e The number of realisations is 3 — again, this is just for illustrative purposes. The
appropriate number of imputations is discussed in more detail below.

e The file.prefix is now 0bs1970-1979, so that we can distinguish the files con-
taining simulations from those containing imputations.

We can now assess the simulation performance by calculating summary statistics for
each simulation, and comparing the distribution of these summary statistics with the

3 SESSION 2: TESTING THE GENERATOR 39

corresponding observed value (or imputation range). For example, we might be interested
in the mean precipitation for January. Each of the 20 simulations will produce a different
January mean precipitation, so we have a simulated distribution for this quantity. The
test of simulation performance is whether or not the observed mean precipitation can
plausibly be considered to belong to this distribution.

Rglimclim offers a range of plots to help assess simulation performance. To access these,
some preprocessing is needed. We will calculate some summaries for two of the VALUE
sites, and also for the average of all the VALUE sites (for the full range of options available,
(type help(summary.GLCsim)). Here are the preprocessing commands:

seasons <- 1list(3:5,6:8,9:11,c(12,1,2))

sim.summary <- summary(sim1970to01979,season.defs=seasons,
thresholds=c(0,NA),
which.sites=c("1394","3910") ,which.regions=1)

obs.summary <- summary(obs1970to01979,season.defs=seasons,
thresholds=c(0,NA),
which.sites=c("1394","3910") ,which.regions=1)

To see what has been done here, type sim.summary. The system reports the variables,
sites and regions for which summaries have been calculated, and also which summary
statistics are available. Notice the use of the thresholds argument in the summary
commands above: if this is supplied, the system will compute the proportion of threshold
exceedances (corresponding to the proportion of wet days when, as here, a zero threshold
is set for precipitation), along with the mean and standard deviation of these exceedances.
The NA threshold for the second variable means that threshold exceedance statistics are
not calculated for temperature. Notice also the use of the season.defs argument: this
will compute annual time series of seasonal means for user-defined ‘seasons’ (which are
just groups of months, specified here in the seasons object).

There is a lot of information in the summary object. Some plots would be helpful; these
can be produced using the plot command. This is very flexible (see help (summary.GLCsim)).
It is helpful to extract the names of the summary statistics, in a format that can be used
directly for input into this plot command:

stat.names <- dimnames(sim.summary$Daily$Regions)$Statistic

Look at the stat.names object: the first 10 statistics relate to the marginal distributions
of each variable, and the remainder are inter-variable correlations. Start by producing
some plots for marginal precipitation statistics:

if (dev.cur()==1) x11(width=8,height=6)

par (mfrow=c(2,5))

plot(sim.summary,imputation=obs.summary,which.sites=NULL,
which.timescales="daily",which.variables="Precipitation",
which.stats=stat.names[1:10])

This produces 10 plots, each showing the simulated distributions of a different summary
statistic for each month of the year. The grey bands indicate the percentiles of the sim-
ulated distributions, while the black bands show the range of values obtained from the 3

3 SESSION 2: TESTING THE GENERATOR 40

imputations (note that the imputation argument is optional — if we were downscaling
future climate projections for example, we would not have any observations / imputations
to add to the plot). The plots are too small to accommodate their titles here; for finer
control, and the selection of which plots are produced, see the subsequent examples and
the help page. The summaries produced are the mean; standard deviation; maximum and
minimum values (the minimum being zero for every month of every simulation, unsurpris-
ingly); autocorrelation at lags of 1, 2 and 3 days; proportion of wet days; and the mean
and standard deviation on wet days only (defined as exceedances of the zero threshold).

If the simulated time series are realistic, the observed or imputed values for each
statistic should look like a sample from the simulated distributions. Informally, this
means that the imputation envelopes should lie mostly within the simulated distributions
and, moreover, should traverse the range of those distributions (i.e. there should be some
values at the lower end, some at the upper end and some in the middle — although, with
only 20 simulations here, you should not be surprised if the observations occasionally fall
outside the simulation range). The imputation range indicates how much uncertainty is
associated with missing data values.

A similar plot can be produced for temperature. We didn’t define a threshold for
temperature in the summary command, so we cannot consider threshold exceedances here.
We can add some colour, however:

par (mfrow=c(2,4))

plot(sim.summary,imputation=obs.summary,which.sites=NULL,
which.timescales="daily",which.variables="Temperature",
which.stats=stat.names[1:7],colours.sim="colour")

You may feel that this default colour scale is not very intuitive for temperature (it was
designed with precipitation in mind). We will fix this later. Next though, we can look at
inter-variable correlations:

par (mfrow=c(2,2))

plot(sim.summary,imputation=obs.summary,which.sites=NULL,
which.timescales="daily",which.stats=stat.names[11:12],
colours.sim="colour")

You can read the plot titles now: they show that these plots are for the daily time series
of mean precipitation and temperature, averaged over all of the VALUE stations. You
may want instead to look at the behaviour for a specific site:

plot(sim.summary,imputation=obs.summary,which.sites="1394",
which.regions=NULL,which.timescales="daily",
which.stats=stat.names[11:12],colours.sim="colour")

The imputation range is very narrow here: site 1394 has a complete record (this is why
it was chosen for use in the VALUE experiment).

In some applications, it is important to reproduce the variation in means or totals over
monthly or longer time scales. In the summary commands above, we calculated summaries
for four 3-month seasons. To visualise these we can use the plot() command again, but
with which.timescales="monthly":

3 SESSION 2: TESTING THE GENERATOR 41

quantiles <- ¢(0,0.1,0.25,0.5,0.75,0.9,1)

plot(sim.summary,imputation=obs.summary,which.sites=NULL,
which.timescales="monthly" ,which.variable="Temperature",
quantiles=quantiles,colours.sim=heat.colors(length(quantiles)-1),
ylabs=rep(expression(degreexC),4))

This example illustrates some further options in the plot command, giving the user
detailed control over the output.

3.1.2 Connection with VALUE measures

The summary statistics produced by Rglimclim are intended to help you understand how
well your weather generator performs with respect to the marginal distributions of each
variable, the dependence between variables and the time series properties such as season-
ality, autocorrelation and interannual variability. In VALUE, such summary statistics are
referred to as ‘indices’ to quantify different aspects of the weather. The full list of VALUE-
endorsed indices is at http://www.value-cost.eu/indices: Rglimclim computes many,
but not all of them. For example, the representation of inter-site dependence is not ex-
plicitly addressed at present. It can be assessed indirectly, however, via the regional mean
summary statistics — because, for example, the variability of a 10-site average depends
both on the variation in the individual series and on the correlation between the sites.

As well as defining indices, VALUE defines measures for assessing how well they are
reproduced. Rglimclim does not attempt to calculate such performance measures: the
plots allow an informal assessment of performance. If a user wishes to calculate such
measures however, they can access the calculated indices in the summary objects (e.g.
the simulated mean for simulation ¢, month j, site k and variable ¢ is contained in the
(1,7,k,0,1) element of the Daily$Sites component of such an object). Moreover, users
can write routines to examine alternative indices that are not provided directly by Rglim-
clim. For example, the sample script provides code to compare the simulated distribution
of annual precipitation maxima with the distribution obtained by fitting a Generalised
Extreme Value (GEV) distribution to the observed annual maxima. This allows you to
assess the weather generator performance with respect to rare events. Don’t worry too
much about the details of these commands — you can study them in your own time
later. But do run the commands, to find out how the quantiles of your simulated annual
maximum distribution compare with those of the observations, both for a single site and
for the regional mean precipitation. Are your simulated distributions of annual maxima
consistent with what you would expect from the GEV return level plots?

The results above may have revealed some problems with your model structure. If you
want to adjust your models slightly therefore, do so before moving on to the next section.
3.2 Out-of-sample validation

Your final task is to assess the performance of your weather generator for a period (1991-
2002) that was not used to develop the models. We will do this properly, using 100

http://www.value-cost.eu/indices

3 SESSION 2: TESTING THE GENERATOR 42

simulations and 39 imputations.'? The commands are:

5im1991t02002 <- GLCsim(list(list(Occurrence=0ccModel8,Intensity=IntModel5),
TempModel8),
nsims=100,start=199006,end=200208,impute.until=199005,
which.regions=0:1,daily.start=199101,
simdir="./SimFiles",file.prefix="Sim1991-2002")
0bs1991t02002 <- GLCsim(list(list(Occurrence=0ccModel8,Intensity=IntModel5),
TempModel8),
nsims=39,start=199006,end=200208,
which.regions=0:1,daily.start=199101,
data.file="NorthIberiaPrecipTemp-1990-2012.dat",
simdir="./SimFiles",file.prefix="0bs1991-2002")

While these commands are running (probably 7-8 minutes in total), note the following:

e Both sets of simulations start in June 1990 instead of January 1991. This is be-
cause the models include lagged values of both variables; to initialise a simulation
it is therefore necessary to provide some initial values. Where possible, Rglimclim
initialises its simulations with data immediately prior to the simulation period. If
we started the simulations in January 1991 therefore, they would all be initialised
using observations from the end of December 1990: thus they would be very similar
to each other for the first part of January 1991. By starting the simulations six
months earlier, the initialisation will have negligible effect on the period of interest.
This is directly analogous to the ‘spin-up’ period for a numerical climate model.

e Although the simulations start in June 1990, we are not interested in the output
until January 1991. The argument daily.start=199101 ensures that the output
files only contain data for the period of interest.

e When fitting models, we used a data file containing data from 1960-1990. In the sec-
ond command above, the argument data.file="NorthIberiaPrecipTemp-1990-2012.dat"
is needed to define the data used for imputation from 1991-2002.

e The simulation period ends in August 2002, not December 2002. This is because
the ERA40 predictor data only run to August 2002.

3.2.1 Your task

You should now examine a variety of plots to assess the performance of your weather
generators. You should aim to answer the following questions:

e How well are the marginal aspects reproduced for each variable? Are any aspects
reproduced particularly poorly? (for example, from the model-building diagnostics,
you might expect precipitation variability to be reproduced poorly in summer).

1239 seems like a strange number. It is chosen because the resulting range of values for each summary
statistic forms a 95% prediction interval for the value that would have been obtained from complete data
(proof: exercise!).

4 FINALLY ... 43

e How well are the temporal aspects reproduced? These include features such as
seasonality as well as autocorrelation.

e How well are spatial aspects reproduced? (look at summary statistics for the VALUE
regional mean time series).

e Based on your results, and your experience while building the models, what would
be your advice to a user who is considering using your weather generator in an
assessment of climate change impacts?

We will aim to finish the session with a discussion: each group will present their results
briefly, summarising their model structure and atmospheric predictors, along with the
simulation performance. Hopefully this will provide some insight into questions such as:
is it better to model precipitation conditional on temperature, or vice versa? Is a weather
classification approach better or worse than an approach based directly on circulation
indices? What are the main strengths and weaknesses of this GLM-based approach to
weather generation?

4 Finally ...

These practical sessions have introduced a lot of material. Don’t worry if you didn’t
understand all of it. I hope that some of you will want to explore these ideas further in
your own work; and that this document is a useful guide for you.

The latest version of Rglimclim is always available from http://www.homepages.ucl.
ac.uk/~ucakarc/work/glimclim.html. There is a mailing list, used to notify users of
updates. If you would like to receive this information, please send me an email and T will
add you to the list. Also, if you would like to see some features that are not currently
available then please let me know by email. T will add them to my “to-do” list (which is,
however, very long!).

Thank you for your attention and your patience.

Richard Chandler
London, 30th October 2014

http://www.homepages.ucl.ac.uk/~ucakarc/work/glimclim.html
http://www.homepages.ucl.ac.uk/~ucakarc/work/glimclim.html

	Introduction
	Data available
	Precipitation and temperature data
	Topographic data
	Atmospheric predictors

	Setting yourself up

	Session 1: building a weather generator
	Getting started
	Loading Rglimclim

	Reading topographic and station information
	Defining the station information to Rglimclim
	Modelling precipitation occurrence
	The simplest possible model
	Checking the model
	Including seasonality
	Systematic regional variation
	Accounting for autocorrelation
	Finalising the baseline occurrence model

	Models for precipitation intensity and temperature
	Building a bivariate model
	Your task

	Incorporating atmospheric predictors
	Your task

	Session 2: testing the generator
	Introduction to simulation
	Multiple imputation
	Connection with VALUE measures

	Out-of-sample validation
	Your task

	Finally …

