Exercises for weather generator lectures, November
2014

Before you start

These exercises are all designed to be run from within R. You should have installed R
and RStudio on your computers already, along with the necessary R packages — if not,
follow the instructions in file Rglimclim_Preparatory.pdf at http://www.value-cost.
eu/TS3. Having done this, everything you need for the weather generator sessions can be
found in the zip archive WeatherGenerators.zip at the same web address. Download
this archive, and unpack it somewhere sensible on your computer. It creates the following
subdirectories:

HANDOUTS : contains copies of the handouts and slides for the weather generator training.

PRACTICALS : contains all of the material for the Rglimclim practical sessions, and for
these exercises.

PREPARATORY : contains the preparatory material that you were sent before the workshop,
updated to include the latest version of Rglimclim.

In the PRACTICALS directory, you will find a script called WGExercises.r. This script
contains all the commands used in these exercises. Start up RStudio therefore, and use
the Session menu to change the working directory to the PRACTICALS/ directory you
have just created. In the bottom right-hand subwindow, click on the file WGExercises.r.
The script will open in the upper left-hand subwindow.

Exercise 1: simulation and properties of two-state Markov chains

The first exercise is designed to help you understand the properties of Markov chains, and
in particular the notion of ‘convergence to equilibrium’. The first few commands in the
script define a function that simulates n values from a first-order, two-state Markov chain
with transition probabilities pg; and pq;, starting from an initial value yy. The states
here are labelled ‘0’ and ‘1’, and can be thought of as representing ‘dry’ and ‘wet’ days
respectively.

As supplied, the next few lines of code use this function to simulate 50 values from
each of two separate Markov chains, both with transition probabilities pg; = 0.2 and
pi1 = 0.6. Informally you can interpret this as ‘20% of dry days are followed by a wet
day; but 60% of wet days are followed by a wet day’. The only difference between the
two simulations is that one starts with 0 and the other starts with 1. The code then
calculates the cumulative proportion of ‘wet days’ in each simulation (i.e. for each time
point t = 1,2,...,50, the proportion of ‘wet days’ in the first ¢ days is calculated. Finally,
these cumulative proportions are plotted for the two chains starting from different points,
along with the theoretical equilibrium proportion.


http://www.value-cost.eu/TS3
http://www.value-cost.eu/TS3

e Do the cumulative proportions of wet days appear to converge to the theoretical
value as anticipated? If not, what happens if you increase n? Try 500, 5000, .. ..
How long does it take to achieve convergence? (you could reasonably argue that
it would be better to calculate the proportion of wet days for each chain using a
moving ‘window’, so that you can see the convergence more clearly — feel free to
adapt the code to do this!)

e Experiment with different values of the transition probabilities py; and pqq, and look
at the effect of varying them. How would you assign these transition probabilities in
order to ensure that there was no temporal dependence in the Markov chain? How
quickly do the chains converge in this case?

Exercise 2: properties of a simple weather generator

This exercise is designed to demonstrate that the properties of even a fairly simple weather
generator can be extremely hard to deduce from its specification. The generator produces
time series using the equation

Y, =3+ 3cos 265 §sm +-Y,_1+4+¢,

365 4

where €; has a standard normal distribution. This structure might provide a very crude
approximation to the behaviour of a variable such as temperature, which has a strong
seasonality and also day-to-day correlation (induced here by the term 3Y; /4 in the
right-hand side of the equation).

27 X day of year] N 1. [QW x day of year 3

Before you run the code, study the equation above and ask yourself:

e If you were to run a long simulation from this weather generator, roughly what
would you expect to be the mean of your simulated values? (OK, you know from
the lecture slide that the answer is 12: now, you have to figure out why!).

e Roughly what do you think will be the amplitude of the seasonal cycle in this
weather generator?

Now read the code, make sure you understand it, and run it. It produces a 30-year
simulation of daily values, plots the resulting time series and prints the overall mean. The
mean should be very close to 12. How well did you guess the amplitude of the annual
cycle?

As indicated on the lecture slide, for this particular model it is in fact possible to
derive an expression for the amplitude of the annual cycle. The exercise is provided,
however, to show that even simple-looking models can have surprising properties. For
weather generators of realistic complexity, simulation is the only feasible way to proceed.

Exercise 3: extremes of dependent sequences

This final exercise is designed: first, to illustrate the fitting of Generalised Extreme Value
distributions and use of return level plots; and second to show how dependence in a



sequence can change the extremal (and non-extremal!) properties. We will carry out two
separate sets of simulations, for sequences based on different distributions.

Sequences based on normal distributions

The first set of simulations uses sequences of Gaussian variables, generated according to

the equation
Yi=0Y 1 +&

where ¢, ~ N(0,1) (the process (Y;) is a first-order autoregressive process). The script
contains a function to simulate realisations from this process, of arbitrary length, and
with arbitrary values of ¢. Run the lines:

sim.normalsequence <- function(n,phi,nstart) {
if (abs(phi) >= 1) stop("phi must be between -1 and 1")
n.all <- n+nstart
e <- rnorm(n.all)
y <- rep(NA,n.all)
y[1] <= e[1]
for (i in 2:n.all) {
y[i] <- (phixy[i-1]) + e[il
}
y <= y[-(1:nstart)]

y
}

R will not execute anything as a result of this: it just defines a new function called
sim.normalsequence (), which you can use to simulate sequences from the model.

The next few lines show how to use this function to simulate ‘100 years of daily values’
from the model when ¢ = 0; to see the mean and variance of these simulated values; and
to produce a quantile-quantile plot to check whether or not the simulated values have a
normal distribution (obviously they have, because when ¢ = 0 we have Y; = &, — so there
is nothing surprising here). Next, a GEV distribution is fitted to ‘annual maxima’ and
the estimated shape parameter is output, along with its standard error. The fit of the
GEV is assessed using a return level plot. There are some ‘coding tricks’ here — ask if
you don’t understand them.

Run the code, and answer the following questions:

e For maxima of normally distributed variables, the GEV shape parameter should
be zero in theory. Are your results consistent with this? How well does the GEV
distribution fit the data?

e Next, change the value of ¢ and repeat the exercise (you can use any value between
—1 and +1). Do your qualitative conclusions change? If so, how?



Sequences based on gamma distributions

When you have finished exploring the normal distribution, move on to the second set
of simulations which uses gamma distributions instead. To see the connection between
the two sets of simulations, note that under the normal model above the conditional
distribution of Y; given Y; ; is itself normal, with mean E(Y), = ¢Y;_; and variance 1.
Applying a similar idea using gamma distributions, we might specify that:

e Conditional on Y; 1, Y; has a gamma distribution with mean y; = a + ¢Y;_; and
shape parameter 1.!

e a is equal to 1 — ¢. Note that in this case, we have u; = 1+ ¢(Y;1 — 1). So,
given Y;_1, we have E(Y; — 1) = ¢(Y;—1 — 1); and if we define Y;* = Y; — 1 then we
have E(Y;*) = ¢Y;" ;. In a sense therefore, this process is directly analogous to the
Gaussian process above. It can also be shown that unconditionally, E(Y;) = 1 for
each t in the new process (this is verified in the simulations below, by displaying
the mean of the simulated values).

The remaining set of commands are almost identical to those for the Gaussian process:
the only differences are (i) the use of the fitdistr() command (from the MASS library)
to fit a gamma distribution to the simulated values, and the need to write our own code
to produce a quantile-quantile plot for the gamma distribution.? Once again, for maxima
of independent gamma variables the GEV shape parameter should be zero. Run the code
with ¢ = 0, and check (a) the quantile-quantile plot of the original observations against
the fitted gamma distribution (b) the estimated shape parameter and its standard error
(c) the fit of the GEV distribution to the simulated maxima according to the return level
plot. Then repeat the exercise for different values of ¢ (which can take values between 0
and 1 in this case). Are the simulated values still gamma distributed? Does the GEV still
fit the annual maxima? Is the estimated shape parameter still zero to within sampling
error?

You might think that we should set the mean to ¢Y; as before, but for the gamma distribution —
which can only take non-negative values — this produces sequences that all converge to zero.

2The fitdistr() command will probably return some warning messages — these are not serious and
can be ignored.



