

Difficulties in Making Sense of Downscaling

Douglas Maraun

GEOMAR Helmholtz Centre for Ocean Research Kiel

Outline

Criticising Downscaling

Alternative Concepts

Revisiting Criticism and Alternatives

Summary and Comments

Criticising Downscaling

Alternative Concepts

Revisiting Criticism and Alternatives

Summary and Comments

I don't want to use downscaling because

- the resolution is too coarse
- I am fine with bias corrected GCMs
- the results of different methods contradict each other
- it adds another layer of uncertainty
- I don't want to use model data at all but rather rely on first principles

• ...

Spatial resolution too coarse

Roessler et al., VALUE end user survey

Temporal resolution too coarse

Roessler et al., VALUE end user survey

Uncertainty Cascade

D. Maraun Difficulties in Downscaling

Criticising Downscaling

Alternative Concepts

Revisiting Criticism and Alternatives

Summary and Comments

Response Surfaces/Decision Scaling, etc.

- Drive impact model with large range of stochastic simulations;
- based on results, construct response surface to infer sensitivity of change on different input variables;
- **3.** compare bias corrected set of GCMs with response surface.

e.g., Prudhumme et al., 2010; Brown et al., 2012

Example 1: change in peak runoff

Left: NE Scotland; right: SE England

Prudhomme et al., 2010

Example 2: reservoir reliability

Green: no adaptation action required; white: action required

Brown et al., 2012

Criticising Downscaling

Alternative Concepts

Revisiting Criticism and Alternatives

Summary and Comments

D. Maraun

13 / 42

Representativeness Problems

Bias Correction Settings

Pure bias correction vs. bias correction plus downscaling

D. Maraun

Bias Correction Settings

Pure bias correction vs. bias correction plus downscaling

Difficulties in Downscaling

Bias Correction Settings

Pure bias correction vs. bias correction plus downscaling

Representativeness Problem

D. Maraun

15 / 42

One Grid Box State ↔ Several Local States

Grid box variability does not explain all local variability

Bias correction does not add random variability GEOMAR

Bias correction is deterministic

16 / 42

Quantile mapping

applied to 20 gauges in Harz mountains

red: uncorrected, blue: corrected

Maraun, J Climate, 2013

QM effect at grid scale

QM overcorrects the area drizzle effect and inflates area extremes

Maraun, J Climate, 2013

QM effect at grid scale

QM overcorrects the area drizzle effect and inflates area extremes

Maraun, J Climate, 2013

Illustrating the Problem

REMO grid box precipitation mapped onto 20 rain gauges

Maraun, J. Climate, 2013

Potential Solution

Stochastic Bias Correction

- Correct systematic biases
- Add local scale random variability
- "Bias correction weather generator"

Wong et al., 2014; Eden et al., 2014

Added Value of Downscaling

D. Maraun Difficulties in Downscaling 21 / 42

Downscaling Changes Change

Teichmann et al., 2013

Do RCMs add value to simulated trends

Precipitation Trends in Europe, JJA, 1960-2002 [percent per decade]

courtesy O. Wulff

23 / 42

Do RCMs add value to simulated trends

Precipitation Trends in Europe, JJA, 1960-2002 [percent per decade]

courtesy O. Wulff

23 / 42

State-of-the-art might be not good enough

e.g., for hourly precipitation extremes

Kendon, 2013

D. Maraun Difficulties in Downscaling

25 / 42

GCM Biases and their Correction

Temperature and precipitation biases

CMIP5, multi-model mean

Flato et al., IPCC AR5, 2013

26 / 42

Temperature and precipitation biases

CMIP5, multi-model mean

GCM biases are often expressions of fundamental process misrepresentations

Flato et al., IPCC AR5, 2013

26 / 42

Widespread "approach"

Map GCM output locally onto observed climate

Distribution

Bias Correction

Distribution

GCM

Observations

Common variant

Dynamical downscaling plus bias correction

Dynamical Downscaling

Bias Correction

GCM

RCM

Observations

Gedankenexperiment

- Bias correction attempts to correct model misspecifications
- Increase misspecifications as far as possible

Bias correcting an energy balance model to infer regional changes obviously doesn't make sense.

So, where are the limits?

Origins of BC in weather forecasting

Biases emerge locally from parameterisation errors and topography

D. Maraun

Difficulties in Downscaling

Origins of BC in weather forecasting

Biases emerge locally from parameterisation errors and topography

D. Maraun

30 / 42

Origins of BC in weather forecasting

Biases emerge locally from parameterisation errors and topography

D. Maraun Difficulties in Downscaling 2 Dec 2014 · U Bern

In climate simulations, things are different

Common SST Biases of GCMs

courtesy S. Steinig

31 / 42

D. Maraun Difficulties in Downscaling 2 Dec 2014 · U Bern

on large-scale circulation

GEOMA

Impacts of GCM biases

left: imposed SST anomaly; right: DJF SLP response

Keeley et al., QJRMS, 2012

32 / 42

D. Maraun Difficulties in Downscaling 2 Dec 2014 · U Bern

Displaced storm tracks

black: ERA40; green: CMIP3 models; red, blue: two high resolution models

Woollings, Phil Trans R. Soc, 2010

D. Maraun Difficulties in Downscaling

Bias correction of global climate models

Biases results from local errors, but also large scale errors

D. Maraun Difficu

GEOMAR

Bias correction of global climate models

Biases results from local errors, but also large scale errors

D. Maraun

Difficulties in Downscaling

Bias correction of global climate models

Biases results from local errors, but also large scale errors

D. Maraun

Difficulties in Downscaling

GEOMA

Bias correction of global climate models

Biases results from local errors, but also large scale errors

D. Maraun Difficulties in Downscaling

Bias correction of global climate models

Biases results from local errors, but also large scale errors

D. Maraun Difficulties in Downscaling 2 Dec 20

34 / 42

Potential problems of GCM bias correction

Southward displaced stormtrack, southward shift in the future

D. Maraun

Difficulties in Downscaling

Final Remarks

D. Maraun Difficulties in Downscaling

GEOMA

Revisiting the uncertainty cascade Downscaling does not¹ add but quantifies uncertainties

¹in case of proper validation

GEOMAR

Revisiting the uncertainty cascade Downscaling does not add but quantifies uncertainties

¹in case of proper validation

GEOMAR

Revisiting the uncertainty cascade Downscaling does not add but quantifies uncertainties

¹in case of proper validation

38 / 42

Missing relevant sensitivities

D. Maraun Difficulties in Downscaling 2 Dec 2014 · U Bern

38 / 42

Missing relevant sensitivities

D. Maraun Difficulties in Downscaling 2 Dec 2014 · U Bern

Criticising Downscaling

Alternative Concepts

Revisiting Criticism and Alternatives

Summary and Comments

Need for/limitations of downscaling

- GCMs represent area averages
- GCMs might not represent the right climate change signal because of regional effects
- GCMs misrepresent crucial processes

Need for/limitations of downscaling

- GCMs represent area averages (Can in principle be overcome by downscaling)
- GCMs might not represent the right climate change signal because of regional effects (Can in principle be overcome by downscaling)
- ► GCMs misrepresent crucial processes (Cannot be overcome by downscaling)

Need for/limitations of downscaling

- GCMs represent area averages (Can in principle be overcome by downscaling)
- GCMs might not represent the right climate change signal because of regional effects (Can in principle be overcome by downscaling)
- ► GCMs misrepresent crucial processes (Cannot be overcome by downscaling)
- None of these problems can be overcome by response surfaces

Comments

- Response surfaces are no alternative to downscaling.
- Response surfaces are a useful tool: to assess and identify (important) sensitivities to extrapolate beyond simulations to formally decouple input and output.
- All relevant sensitivities need to be considered!
- You need good weather generators to create response surfaces!
- We do not have no knowledge, but how to relate this to reality?

Pragmatic Suggestion

Combine bottom-up and top-down approaches

- Downscaling to inform creation of response surfaces
- Downscaling to compare potential regional future climates with response surfaces
- Essential:
 - Does my GCM sufficiently well represent relevant processes? Is my downscaling appropriate for my context?
- ➤ We need to understand about which impacts we can say something about future change, and which not.
- ▶ We need to understand where downscaling is necessary or not.

Thank you for your attention!