

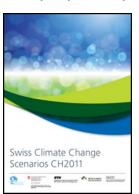
Swiss Confederation

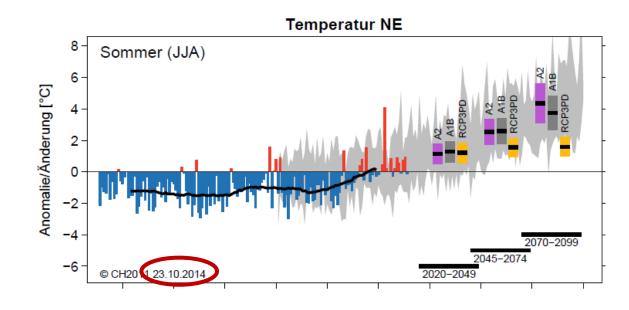
user needs from the perspective of a national weather service

Mark Liniger, Andreas Fischer Christof Appenzeller, Mischa Croci-Maspoli, Sophie Fukutome, Elias Zubler

CH2011 and beyond

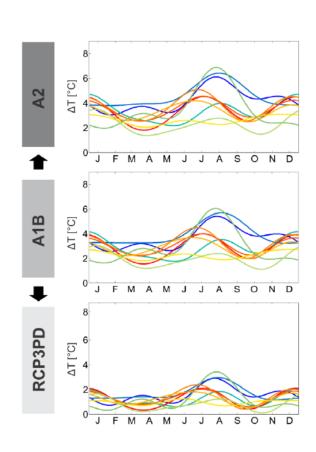
Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz




Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

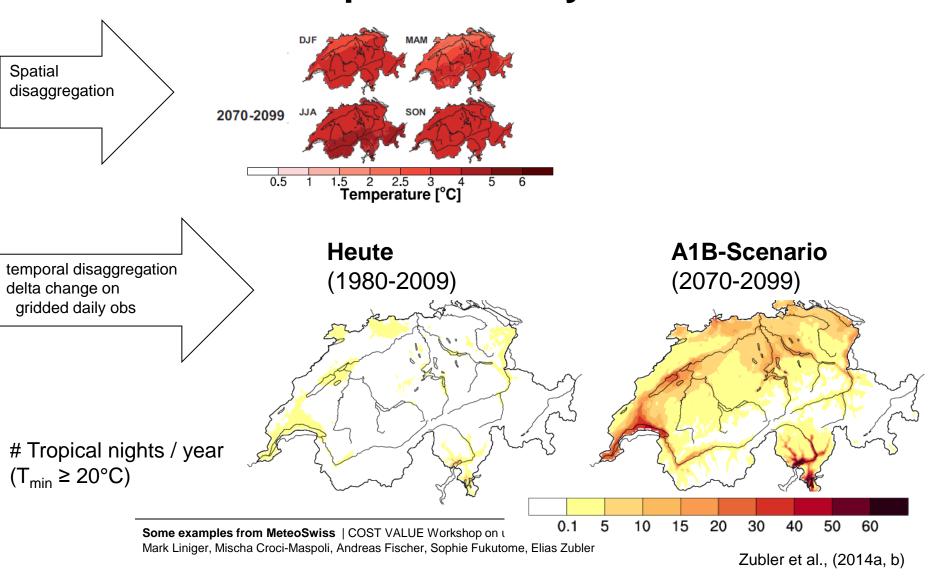
OcCC

Organe consultatif sur les changements climatiques Beratendes Organ für Fragen der Klimaänderung

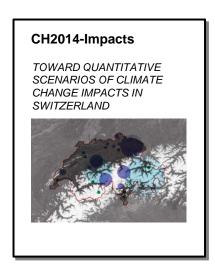


Release am 28. September 2011 www.ch2011.ch

CH2011 Extensions in prep based on user feedback

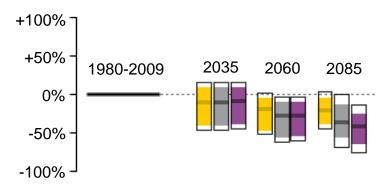

- Daily delta-change station series for other scenarios?
 - Bosshard et al.
- How to combine seasonal changes?
 - Fischer et al.
- Alpine regions? Transient changes?
 - Fischer et al.
- Extreme precipitation?
 - Rajczak & Schär

Bosshard et al.

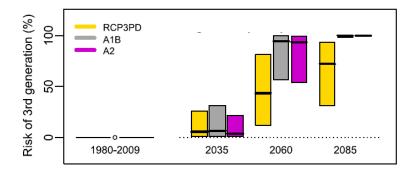


User specific indices for CH2014 Impacts - Study

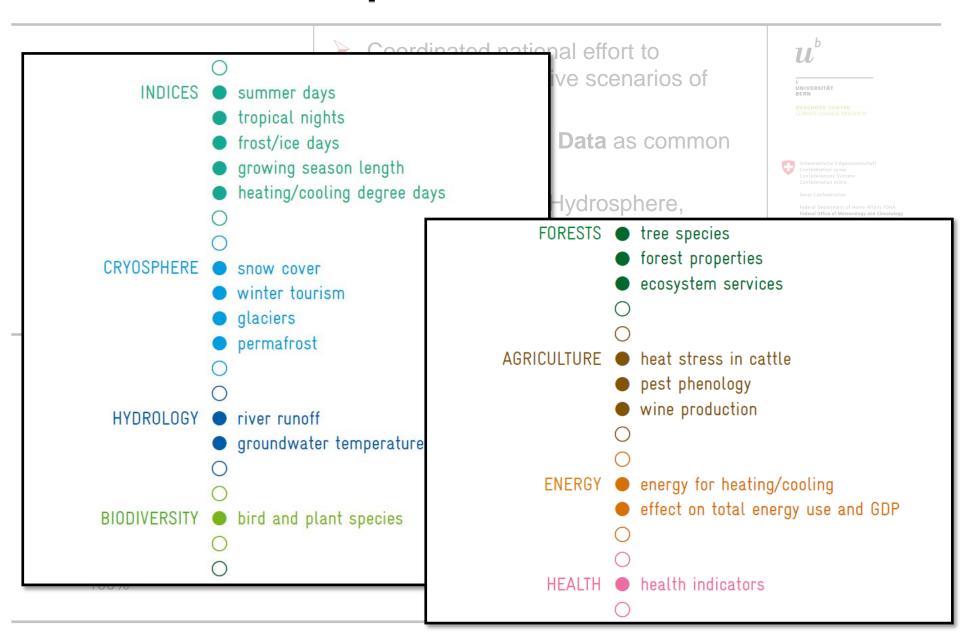
CH2014-Impacts



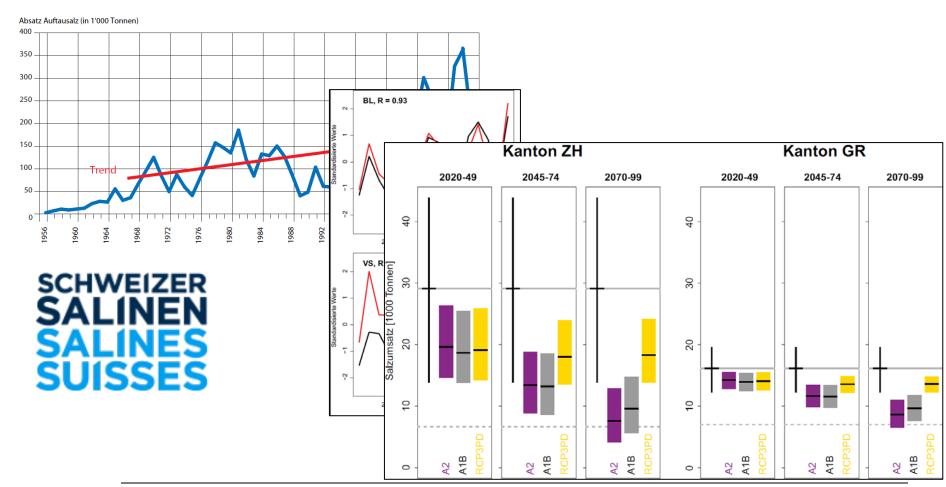
- Coordinated national effort to calculate quantitative scenarios of climate impacts
- CH2011 Scenario Data as common basis
- Different Sectors: Hydrosphere, Cryosphere, Agriculture, Forests, Biodiversity, Health, Energy
- Released in March 2014



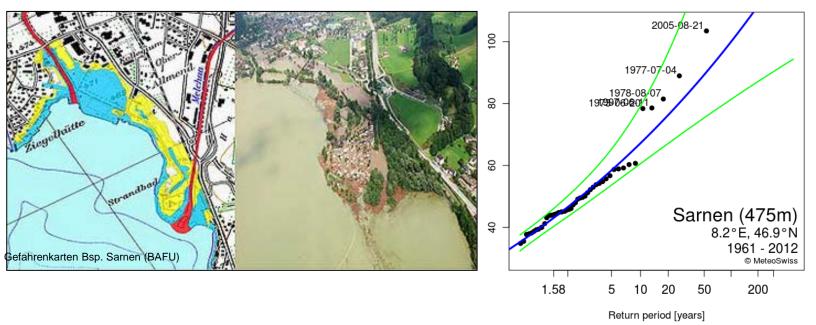
Example 1: Projected Summer Runoff (Emme)



Example 2: Risk 3rd Generation Codling Moth



CH2014-Impacts


Example: Future road salt use in Switzerland

Project Niederschlagsextreme

BAFU + MeteoSchweiz with various Stakeholders

Return values of extreme precipitation «blauen Bände» (Zeller, Geiger, Röthlisberger, 1976-1992, WSL)

- Research and development
- Continuous update and operation
- Implementation and user interface
 - → Market research with 12 interviews (each 1 hour) with stakeholders of engineering offices, administration, energy companies, insurance

RESULTS

Two separate Online-Modules

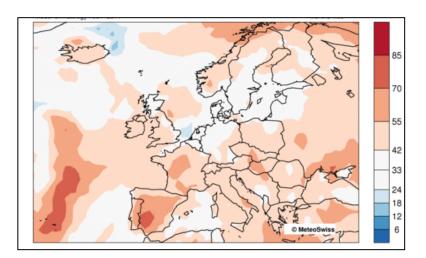
Basic

- Simple and fast presentation of specific extreme-value-analysis results
- Search functionality
- Catalogue of Top10 events
- Output as simple values, diagrams, PDF with summary results.

→ Webportal

Pro

- Ability to work with raw data
- Import function of user data, analysis of time series, extreme value statistics.
- High flexibility and individuality in use
- High level analysis by MeteoSwiss on issues like trends, cycles, etc.
- Background information on station history etc.
- Tutorials, training, etc.


> Toolbox
(long-term)

The EUPORIAS project

Slides by Marta Bruno Soares m.soares@leeds.ac.uk

- EUPORIAS: EUropean Provision Of Regional Impact Assessment on a Seasonal-to-decadal timescales;
- Co-production between producers and users of prototypes of climate impact prediction services on seasonal to decadal (S2D) timescales (a month up to a year; 2 to 10 years);
- Led by UK Met Office; 24 partners (incl. MeteoSwiss),
 15 WPs, 60+ stakeholders.
- More information: www.euporias.eu

Seasonal forecast: 3-monthly mean temperature to be above average conditions for temperatures from May to July 2012.

Source: MeteoSwiss

WP12: Assessing users' needs

Report on results in prep

- Assess users' needs with regard to S2D climate predictions across European sectors (e.g. energy, agriculture, water, health, transport);
- 16 partners led by the University of Leeds: UoL, UK Met Office, TEC, IC3, ENEA, Predictia, AEMET, UC, MeteoSwiss, UL-IDL, ULund, CETaqua, IPMA, WHO, EDF, Meteo-Ro, SMHI
- Interviews with EUPORIAS stakeholders and other users 80 interviews across 16 European countries.
 - Mainly private companies & government organisations
 - Mainly on the energy, agriculture, transport, and water sectors
 - Larger companies (i.e. ≥ 1,000 employees)

But sample not representative of sectors or Europe!

Use of weather and climate data

Report on results in prep

Sector (n=interviews)	Historical data/past observations	Weather forecasts (up to 1 month)	Seasonal forecasts	Climate change projections/ scenarios			
Energy (n=14)	XXXXXXXXX	ххххх	хххххх	XX			
Agriculture (n=12)	ххххх	ххххххх	хххх	XXX			
Transport & emergency services (n=12)	XXXXXX	XXXXXXXXXX	XXXX	хххххх			
Water (n=10)	хххххх	хххххххх	хххххх	xxxxxx			
Tourism (n=9)	x	хх					
Health (n=8)	XXX	хххххх	хх	XXXXX			
Forestry (n=5)	хх	хххх		X			
Insurance (n=5)	хх	ххх	XXX	x			
Other (n=4)	хх	ххх	X	хххх			

Note: Each cross corresponds to an organisation using that type of weather/climate information.

Use of weather and climate data

Report on results in prep

- <u>Type of data</u> most used are weather forecasts; historical data used to understand climate variability/feed models/forecast future conditions; CC scenarios used to plan impacts or capital investment;
- Main parameters precipitation (rainfall), temperature, and wind;
 other included solar radiation, snowfall, frost, & humidity;
- <u>Post-processing</u> many process data in house (n=21), others outsource (n=11), and some do both (n=13);
- <u>Climate information indices</u> few use it; mostly related to temperature (e.g. HDD,GDD) & precipitation (e.g. SPI);
- <u>Main sources</u> National Met Services; other sources include research institutes, government agencies, own data, and ECMWF;
- Larger organisations tend to use more types of information.

Political recognition of climate adaption needs

Adoption of "Aktionsplan Anpassung an den Klimawandel" by federal council in April 2014

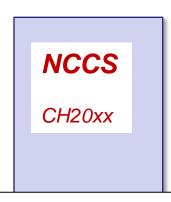
Regular update of regional climate scenarios for Switzerland

- Coordination in close collaboration with experts of academic sector.
- Regionalization for specific locations and sectoral needs.
- Communication and dissemination of scenarios and corresponding infrastructure.

Climate adaptation plan by Swiss Government: challenges across sectors

		₩ Vate lschaft	⊍Natural∘disasters	-Agriculture	ν F orestry	Emergy	⊤4ourism	Biodiversity nent	Health	RSpatial developmer
1. Grdeat Hitzebelastung in Städten und Agglomerationen										
2 zSummer droughts										
3. SFLOOding wasserrisiko										
4. AMass movements häufigere Massenbewegungen										
5. SSnowstine fallgrenze										
6. BWaterg soils, Vair qualityund Luftqualität										
7. Veränderung von Lebensräumen, Artenzusammensetzung und LanECOSYSTEM Changes										
8. ASpreading of diseases kheiten, gebietsfren	nde Arten									
9 Monitoring, early warnings		alle Sektoren								
10. Uncertainties, iknowledge gaps ssenslücken		alle Sektoren								
11. Information und Koordination		alle Sektoren								
12. Ressources, finance		alle Sektoren								

How to go onwards?

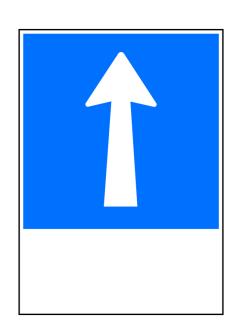


(ETH, MeteoSwiss, ProClim, et al.)

CH2011

(BAFU Regional Klimaszenarienb

- Brainstorming with small group of experts based on the experience from CH2011
- "Market" research on user needs on climate change scenarios


(BAFU Anpassungsstrategie,)

(Oeschger Centre et al.)

Conclusions

- Understanding the world of the users is important.
 - Everybody has to learn about the others.
 - opening new research questions.
- Service development is not a top-down design, but messy and highly interactive.
 - Outcomes can differ significantly from what has been planed at the beginning.
 - There is no "solution to everything"

Conclusions

- Understanding the world of the users is important.
 - Everybody has to learn about the others.
 - opening new research questions.
- Service development is not a top-down design, but messy and highly interactive.
 - Outcomes can differ significantly from what has been planed at the beginning.
 - There is no "solution to everything"

