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Statistics & Physics

Physical dependencies must be reflected in the statistics.

The statistics is more robust when it reflect the physics.



Predictors

Stationarity - a common problem

Physical consistency - same physical units on both side of
the equation (dimensional analysis & the Buckingham Pi
Theorem).

[temperature]= [energy]/[M] = [L]/[T] TAT

Predictors must 'carry the signal’, be well-simulated, and
involve a stationary dependency. Relation as strong as (' I
possible. D


http://www.physics.uoguelph.ca/tutorials/dimanaly/
http://en.wikipedia.org/wiki/Temperature

Analysis & Evaluation

Most important - evaluation & diagnostics
Detrended calibration
Cross-validation
Predictor patterns
Residuals
ANOVA
'Comprehensive' evaluation - the entire chain & for ensembiles.



Calibration: large-scales

Predictor pattern & spatial coherence.
Predictor set?
Predictor domain?

Calibration method?
Linear, non-linear.

Examine the physical picture.
Testing & diagnostics:
ANOVA

Spatial predictor patterns




Calibration: Predictor domain

Correlation: p2t & mean T(2m) at Oslo
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Calibration: Cross-validation

Potential problem: over-fit and fortuitous
weighting giving accidental good match.

Solution: Cross-validation or Split sample if
long series.

Alternatively: Stepwise screening (stepwise
regression), or a combination.



Cross-validation
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Split sample
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Short series
Auto-correlation?

Long series
Long-term trends



Calibration: detrended data

Detrended calibration - at least be able to predict long-term
changes.

Test: - capture trend over calibration period? Past trends?
Expected trends — smooth function of season?



Calibyribration; evaluation of trends
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ANOVA: R? & p-values.
Trend = f(season)

Physical plausible
explanations



Calibration: residuals

Residuals: structure? Trends? Distribution?

Weather generators can reproduce the statistics of the
residual part (statistical models).

Main task is to capture all dependencies and regularities.



Lensity
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T(2m)
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Data & prediction
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Virtual & real data space

Different structure:
biases, level of detail.

Models do not
provide an exact
reproduction of the
universe

ESD can bridge the
two realms

Wet-day 24-hr precipitation
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thresh.= 1 mm/day; #stations= 11281 [qqgplctter.R]




How do | combine the information

from the models and the

observations?
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Perfect Prog - 'PP’

Calibration:

predictor = gridded observations (reanalyses).
predictand = point observations.

Match simulations corresponding to predictor
with observations.

Pattern-based, e.g. regression.

EOFs - order or spatial structure?



Model Output Statistics - 'MOS’

Calibration:
predictor = model results.
predictand = point observations.

No need to match simulations corresponding to
predictor with observations. Coupled ocean-
atmosphere models (GCMs) not in synch with
observations.

Weather forecast models.



'PP-MOS' Hybrid approaches

common EOFs: a simple mathematical
technique to ensure model-observation
correspondence.

Mathematically simple, differs through
processing of data: combine observations and
model results on the same grid.
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Model-observation bridging

|deal real is cleaner than the messy real world.
Degradation of variance.



Calibration: 'inflation’

Scaling up the predicted values to have same variance as
original data.

Changes the statistical character of the data — bad idea.

Artificial — we know for sure that the deficient fraction
cannot be explained be explained by the predictor.

Solution: two-component approach where one part is the
predictable 'signal’ and the other the unpredictable 'noise'’
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The two-component aspect

The local climate - predictand:

Two components: principally predictable + unpredictable.
Former important for climate change.

Know a priori that only the predictable part is predictable.

Combine the predictable part related to large scales with
stochastic part unrelated to large scales:

y =1f(x) +n
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Distribution for 24-hr precipitation

Exp law: daily precipitation {1-order polynomial}

log(density)




Validation: 95" quantile

0.95 percentile: empirical v.s. theoretical
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Trend (mm/(day decade)
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log(count)

Gamma & exponential distributior

Log-histogram
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PDF parameter prediction

Wet—day 24-hr precipitation
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thresh.= 1 mm/day; #stations= 11281 [qqgplotter.R]

Daily precipitation: two
pieces of information —
wet-day occurrence
(frequency) and mean
intensity ().

Exponential distribution:
q,=-In(1-p) K
Downscale L.
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wet-day q95 (mm/day)

45

40

35

30

r=0.95(0.9 - 0.98)
p-value= 0 %

o

e predicted
observed

1880

1900

1920

I
1940

year

[
1960

[ |
1980 2000



Empirical Statistical Downscaling

Linear methods



Linear methods

Quantification of y & X

What to optimize?

Least squares (two types)

Canonical correlation analysis (CCA)

Singular vector analysis (SVD)

Maximum likelihood methods
Generalised linear models (GLM)



Quantification of y & X

The predictand y is a single or set of time
series.

Predictor X represent an extensive (large-

scale) area. Can be several grid boxes, indices,
or EOFs.



EOFs

Two types: eigenvalue-based and singular
vector decomposition (SVD). Linear algebra &
matrix notation.

C=xXX' - Ce=Ae > X=EpP

X=UzxzV

Here E and U are EOFs from different
technique



Common EOFs

Mathematically identical to ordinary EOFs, but
applied to a combined data set.

Quality control on the GCMs.

Ensures time indices describe exactly the same
spatial pattern.

One regression step — minimize loss of R’



Rotated EOFs

The EOFs provide a reference frame in data
space for analysis.

Weighting of these is equivalent to a rotation
and a transform in data space.

Weights can be found from regression analysis.

Doubtful if varimax will benefit this type of
analyses.
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The equation

All equations are linear:
y = f(X)
The function f(X) may be non-linear.

Seek transforms of the left and right hand sides so that

they are represented by one term or a sum of terms: y &
f(X).

Base the equation on known physics as far as possible.



Training the model

Estimate the value for the coefficients in the equation which
give the best-fit — maximize or minimize some kind of cost

function. OLR minimizes the distance between the points
and the fitted line. LSF minimises RMSE.



Least squares

2 types: minimizing the perpendicular distance
to a line-fit and the errors in y:




Multi-variate regression:

Projection — minimize perpendicular distance.
Linear algebra equation: Y'=X'W -

W = (XX') ' XY

EOFs for X give more robust results — not ill
posed as E'E=l:

Y=(E, TE)" XY

(



CCA

Two types: BP-CCA based on EOF products
and CCA based on the gridded fields.

Find pairs of patterns which optimise mutual
correlations.

Group of stations and fields.



SVD

Not the same as SVD. Maximize the
covariance between two fields. Similar to CCA.

Find pairs of patterns which optimise mututal
variance.

Group of stations and fields.



Maximum likelihood

If the variables are not normally distributed. Y
may be an integer (days) or a probability [0,1].
Often more complicated than OLR minimizing
distance or RMSE.

Generalised linear models (GLM).
gly)=a tax +ax+..

g(.) is the link function



ML fitting

Different perspective.
Expectation value.

Optimisation by minimizing a
cost function

Optimisation by finding
parameters for PDFs.



Further reading

R:

> install.packages(“clim.pact”)
> library(clim.pact)

> ABC4ESD()

Benestad, R.E., Hanssen-Bauer, |. And Chen, D.(2008) “Empirical-Statistical
Downscaling”, World Scientific Publishers, ISBN 978-981-281-912-3; free
Compendium on empirical-statistical downscaling (2007): -
http://rcg.gvc.gu.se/edu/esd.pdf -
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