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Predicciones  
globales Escenarios de emisión 

Downscaling 
Estadístico: basado en 
métodos estadísticos que 
relacionan las ocurrencias 
locales con las 
simulaciones globales.  

Y = f (X;θ) 
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Los parámetros 
de los modelos 
son ajustados con 
los datos 
observados y 
simulados en 
clima presente. 

A2 

RCM 
A2 B2 

Downscaling Dinámico: 
basado en Modelos 

Regionales del Clima (RCMs) 

Rejilla interpolada (20 km) 

A2 

Statistical  
Downscaling 
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Dynamical vs. 
Statistical 

Downscaling 

SDM has some 
theoretical limitations: 
non-stationarity? 

SDM require historical 
records of the variables 
under study. 

RCMs provide a large 
number of physically 
consistent variables.  

However, they exhibit 
large biases which 
need to be calibrated for 
impact studies. This 
callibration process 
assumes stationarity. 
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1960 1970 1980 1990 2010 2020 2030 2070 2080 2090 … 2000 

Present Climate Future 

Observations 
Spain02, 20km … ………………… 

… ………………. GCM scen. 
AR4 ~250km 

Control scenario: 20c3m B1, A1B, A2 

… ………………. 

Projections 
Spain02, 20km 

… ………………… 

SDM 

Control projections 
………………… … 

Scenario projections 

SDM 

•  PROBLEM 1: Choosing consistent predictors: 

•  PROBLEM 2: Stationarity/robustness: SDM     SDM  

GCM reanal. 
ERA40, 250km 

… ………………. 

day-to-day  
Correspondence 

 
Statistical model 

SDM 

… ………………… 

Statistical 
Downscaling: 
Perfect Prog.  
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1960 1970 1980 1990 2010 2020 2030 2070 2080 2090 … 2000 

Present Climate Future 

Observations 
Spain02, 20km … ………………… 

Reanalysis 
ERA40, 250km 

… ………………. 

day-to-day  
correspondence 

On the use of  
Reanalysis 

data 
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On the use of  
Reanalysis 

data 
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Statistical 
Downscaling 

Methodologies 

Advantages Shorcomings 

Analogs (k-NN) Nonlinear 
Spatial consistency 

Algorithmic. No model. 
Difficult to interpret 

Weather Typing 
(k-means, SOM) 

Nonlinear 
Easy to interpret 

Spatial consistency 

Algorithmic. No model. 
Loss of variance 

 

Regression 
 

conditioned on WTs 

Simple 
Easy to interpret 

Nonlinear 

Linear assumption 
Selection of predictors 

Neural networks Nonlinear Local minima 
Selection of predictors 

Two main methodologies: algorithmic and transfer functions 
(from the ENSEMBLES downscaling portal).  
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http://ensembles-eu.metoffice.com 

EU-funded 
Project 

(2004-2009) 

ENSEMBLES Project (2004-2009) 
Develop an ensemble 
prediction system for 
climate change and linking 
the outputs to a range of 
applications.  

http://www.meteo.unican.es/ensembles 

The statistical downscaling portal is a 
free tool for user-friendly downscaling.  

•  Statistical Downscaling (SD) 
methods/tools. 

 

•  RCM simulations. 
 

•  Gridded observations: E-OBS 
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General classes of downscaling
Local climate = f (larger scale predictors) + locally forced variance

Dynamical
Two approaches

Empirical-statistical
Three main classes

Perturbed observed

RCM Hi-res GCM

Weather Generators Transfer Functions

Trained on long term 
time series and 

atmospheric re-analysis 
data

Conditioned by GCM 
parameters to capture 
low frequency variance

Trained on time series 
that spans range of 

variability, and 
atmospheric re-analysis 

data

Residual local scale 
variance added 
stochastically 

Index / analogues

Requires long term data 
sets and uses weather 

typing or historical 
analogues

Climate change projections: How 
far can we go for Tanzania?

1. New downscaling

Source: 
Bruce Hewitson 

Statistical 
Downscaling 

Methodologies 
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VALUE  
inventory 
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Rejilla de patrones atmosféricos 
para un día n 

Predictandos: precip., etc. 
para un día n 

Yn 
(T(1ooo mb),..., T(500 mb);  
  Z(1ooo mb),..., Z(500 mb);  
              .......;  

  H(1ooo mb),..., H(500 mb)) =  Xn 
Linear regression: 

 

  Yn= a Xn+ b 

a

x

y

x1 x2 x3 x4 x5

Logistic regression 
Probabilistic prediction 

  Yn= F(a Xn+ b) 1.
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1. Transfer 
Functions 
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Variable Nivel Hora 

Geopotencial 500 0 UTC 

Geopotencial 1000 0 UTC 

Temperatura 500 0 UTC 

Temperatura 850 0 UTC 

Humedad Relativa 850 0 UTC 

140 parameters (5 variables, 28 gridboxes), n=16434 

Redundancy (correlation): 
 

 - Principal Components 
 

- Nearest grid-boxes 
Number of EOFs 
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96.5% 

Redundancy: 
EOFs 



Santander Meteorology Group 
    A multidisciplinary approach for weather & climate 

EOF 1 EOF 2 

EOF 3 EOF 4 

Redundancy: 
EOF & CPs 
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(pc1, ..., pcn)  P=  
Dimension ~ 600 

Principal components: 

With only the 10% of Principal 
Components we can reconstruct the 
original standarized fields generating 
minor RMSE of 0.02 

 In the numerical output 
 for Spain we can reduce 
the dimension from over 
6000 to only 600, 
spanning the maximum 
variance,  
of the spatial gridded 
fields 

(T(1ooo mb),..., T(500 mb);  
 Z(1ooo mb),..., Z(500 mb), 
   .......,  
 H(1ooo mb),..., H(500 mb))  

Dimension > 6000 

EOFs of  
Combined Fields 
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Wind Speed  [0,∞) 

P(Wind Speed > 50km/h)  [0,1] 
Observations from 1977- 2002. 

ERA40 over 27 grid points for the 
same period  
(60% for trainning  
40% for validation) 

An illustrative 
example 
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Rx Precip 

Wrong Prediction !!! 

daily 

monthly 

forecast observation 

Temperature 

Limitations 
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Artificial Neural Networks are inspired in the structure and functioning of the 
brain, which is a collection of interconnected neurons (the simplest computing 
elements performing information processing): 

 Each neuron consists of a cell body, that contains a cell nucleus.  
 There are number of fibers, called dendrites, and a single long fiber 
called axon branching out from the cell body. 
 The axon connects one neuron to others (through the dendrites).  
 The connecting junction is called synapse. 

 

Neural 
Networks 
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•  The synapses releases chemical transmitter substances. 
•  The chemical substances enter the dendrite, raising or 

lowering the electrical potential of the cell body. 
•  When the potential reaches a threshold, an electric pulse or 

action potential is sent down to the axon affecting other 
neurons. (Therefore, there is a nonlinear activation). 

•  Excitatory and inhibitory synapses. 

nonlinear activation function  
neuron potential:  

mixed input of  
neighboring neurons 

weights (+ or -, excitatory or inhibitory) 

(threshold) 

Neural 
Networks 
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Multilayer Networks or 
Feedforward Nets. 
Several layers connected 
(input+hidden+output) 

Pattern Recognition 
OCR 
Natural Language Proc 

Interpolation and fitting 
Prediction: Input => Output 

Competitive Networks 
Multilayer networks with 
lateral connections 
(competitive) in the 
last layer. 

Classification 

Topologic reconstruction 

Feature extraction. 

Supervised Problems. Input-Output pairs are provided: 
(x1,y1), (x2,y2), ..., (xn,yn) and the network learns y = f(x). 

Unsupervised Problems. Only input data is provided: 
x1, x2, ..., xn and the network self-organizes it to provide an output. 

Less intuitive. 
e.g. SOM 

Neural 
Networks 
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cxe1
1)x(f
−+

=

The neural activity (output) is 
given by a nonlinear function.  

Gradient 
descent  

1. Init the neural weight with random values 
2. Select the input and output data and train it 
3. Compute the error associate with the output   

4. Compute the error associate with the hidden neurons 

5. Compute 

and update the neural weight according to these values 

x h y 

Inputs 
Outputs 

hi 

Neural 
Networks 
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x h y 

Extreme Lear. 
Machines 

(ELMs) 

The input-to-hidden weights are randomly 
initilialized. The corresponding optmization 
problem is a linear one (using Moore-
Penrose generalized inverse). 

ORIGINAL ARTICLE

Extreme learning machines: a survey

Guang-Bin Huang • Dian Hui Wang •

Yuan Lan
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Abstract Computational intelligence techniques have
been used in wide applications. Out of numerous compu-

tational intelligence techniques, neural networks and sup-

port vector machines (SVMs) have been playing the
dominant roles. However, it is known that both neural

networks and SVMs face some challenging issues such as:

(1) slow learning speed, (2) trivial human intervene, and/or
(3) poor computational scalability. Extreme learning

machine (ELM) as emergent technology which overcomes

some challenges faced by other techniques has recently
attracted the attention from more and more researchers.

ELM works for generalized single-hidden layer feedfor-

ward networks (SLFNs). The essence of ELM is that the
hidden layer of SLFNs need not be tuned. Compared with

those traditional computational intelligence techniques,

ELM provides better generalization performance at a much
faster learning speed and with least human intervene. This

paper gives a survey on ELM and its variants, especially on

(1) batch learning mode of ELM, (2) fully complex ELM,
(3) online sequential ELM, (4) incremental ELM, and (5)

ensemble of ELM.

Keywords Extreme learning machine ! Support vector

machine ! ELM kernel ! ELM feature space ! Ensemble !
Incremental learning ! Online sequential learning

1 Introduction

There exist many types of neural networks, however,

feedforward neural networks may be one of the most
popular neural networks. A feedforward neural network

consists of one input layer receiving the stimuli from

external environments, one or multi-hidden layers, and one
output layer sending the network output to external envi-

ronments. Three main approaches are usually used in

training feedforward networks:

1. Gradient-descent based (e.g. backpropagation (BP)

method [1] for multi-layer feedforward neural net-
works). Additive type of hidden nodes are most often

used in such networks. For additive hidden node with

the activation function gðxÞ : R! R (e.g. sigmoid:
gðxÞ ¼ 1=ð1þ expð&xÞÞ), the output function of the

ith node in the lth hidden layer is given by

GðaðlÞi ; b
ðlÞ
i ; x

ðlÞÞ ¼ gðaðlÞi ! xðlÞ þ bðlÞi Þ; bðlÞi 2 R ð1Þ

where aðlÞi is the weight vector connecting the (l - 1)th

layer to the ith node of the lth layer and bi
(l) is the bias

of the ith node of the lth layer. aðlÞi ! xðlÞ denotes the

inner product of vectors aðlÞi and xðlÞ: Gradient-descent

based learning algorithms usually run much slower

than expected.

2. Standard optimization method based (e.g. support
vector machines, SVMs [2], for a specific type of

SLFNs, the so-called support vector network). Rosen-

blatt [3] investigated perceptrons (multi-layer feedfor-
ward neural networks) half a century ago. Rosenblatt

suggested a learning mechanism where only the

weights of the connections from the last hidden layer
to the output layer were adjusted. After all the rest

weights fixed the input data are actually transformed

G.-B. Huang (&) ! Y. Lan
School of Electrical and Electronic Engineering,
Nanyang Technological University, Nanyang Avenue,
Singapore 639798, Singapore
e-mail: egbhuang@ntu.edu.sg

D. H. Wang
Department of Computer Science and Computer Engineering,
La Trobe University, Melbourne, VIC 3086, Australia
e-mail: dh.wang@latrobe.edu.au

123

Int. J. Mach. Learn. & Cyber. (2011) 2:107–122

DOI 10.1007/s13042-011-0019-y

IWeight=rand(HNeurons,INeurons)*2-1; 
BiasofHNeurons=rand(HNeurons,1); 
tempH=InputWeight*P; 
BiasMatrix=BiasofHNeurons(:,ind);               
tempH=tempH+BiasMatrix; 
H = 1 ./ (1 + exp(-tempH)); 
  
OutputWeight=pinv(H') * T';  
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¡Only the 
output  

connections 
are trained !! 

 

 So the final 
optimization 
can be easily 

solved 

Building the reservoir (high-dimensional  
recurrent nonlinear network) and 
mapping the input to the reservoir 

Fitting the output to the reservoir 
using a simple linear model. 

RC models (e.g. Echo State Networks, ESN) are supervised (input-
output) machine learning tools which are built in two steps: 

Reservoir 
Computing 
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•  The input- and reservoir-weights (including network 
connectivity) are randomly chosen. Thus, performance relies 
on trial and error (testing different model realizations). 

However, there are several problems preventing RC 
to become widely adopted for machine learning problems.  

•  Some properties of the reservoir are poorly understood; i.e. It 
is used as a black-box technique. 

Reservoir 
Computing 
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Wind Speed  [0,∞) 
Observations from 1977- 2002. 

ERA40 over 27 grid points for the 
same period  
   60% for trainning and  
   40% for validation 

• Model 1: Regression 

• Model 2: Neural Network 

Regression vs. 
Neural Nets. 
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PC1 

PC
2 

Analog set 

2. Analogs & 
weather typing 

The method of analogs (k-nearest neighbors) is one of the most popular 
techniques in statistical downscaling, introduced by E. Lorenz (1969). 

2.
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•  Mean 
•  Median 
•  Frequency 
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Based on partitioning the 
atmospheric space (using the 
reanalysis data) in a 
predefined number of groups. 

Given a new pattern 
(X), the group is 
obtained Ck. Then, the 
forecast is P(y>u|Ck). 

Weather 
Typing (WT) 
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Pforecast (precip > u) = ΣCk P(precip > u | Ck) Pforecast(Ck) 

The application to an 
EPS requires 
applying the method 
to each of the 
ensemble members: 

x1 
x2 
x3 
x4 
x5 
... 

Prob(x) 
Mean(x) 

Aggregation of results 

Weather 
Typing (WT)… 

Ensembles 
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•  X1,…, XN are data points or vectors or observations 

•  Each observation will be assigned to one and only one cluster 

•  C(i) denotes cluster number for the ith observation 

•  Dissimilarity measure: Euclidean distance metric 

•  K-means minimizes within-cluster distances: 

∑ ∑∑ ∑ ∑
= == = =

−=−=
K

k kiC
kik

K

k kiC kjC
ji mxNxxCW

1 )(

2

1 )( )(

2

2
1)( 

where 
      
mk is the mean vector of the kth cluster 
 
Nk is the number of observations in kth cluster 
  

K-means 
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•  For a given assignment C, compute the cluster means 
mk: 

•  For a current set of cluster means, assign each 
observation as: 

•  Iterate above two steps until convergence 

.,,1,)(: Kk
N

x
m

k

kiCi
i

k �==
∑

=

NimxiC
Kk

ki ,,1,minarg)(
1
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≤≤

K-means 
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The SOM is made with an arbitrary number  
of centers/prototypes arranged in a 2D grid. 

 Oja E. And Kaski S., 1999: Kohonen Maps. Amsterdam, Elsevier 

The training is made in cycles (t=1,…,n):  
 

1) Compute the winner prototype (closest)  
    wi(t) for each pattern vk : 
 

|| vk – wi(t) ||=mini{|| vk – wi ||, i=1,… ,m}. 
 

2) The winner prototype and the neighbors are 
moved towards the data point: 
 

    wi(t+1)=wi(t)+a(t) vk h(||wi(t) – wi(k)(t)||), 
 

a(t) learning rate (linear decreasing); 
h(x) neighborhood kernel (linear decreasing of the variance) 

Each  prototype wi=(wi1, …,win ) 
n is the dimension of the original space. 

SOM 7 x 7 

K-means 
and SOM 
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The Generative Topographic Maps (GTM) was introduced as a 
probabilistic re-formulation of the self-organizing maps (SOM) 

The  GTM define a non-linear 
transformation from a latent 
space u to the data space given 
by a linear combination of a set 
of non-linear basis functions  

And now a point in the real space x 
has a probabilistic distribution over the 
latent space (centers). 

With this formulation the border problem overcome and can also 
provide a predictability measure for deterministic forecast.  

GTMs 
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Domain 
selection 
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x1 x2 x3 

P ( x 1 , . . . , x n ) = 
n 

Π	


i =1 

P i ( x i | π	

i ) 

The graph allows to define the JPD P(x1,...,xn) in a local factorized form, which 
allows us to make inference:  
P(x | evidence).  

Spatial dependency is very important in Meteorology 

P(x1=0)=0.45  
P(x1=0 | x2=0)=0.89 
 
P(x1=0 | x2=0, x3=0)=0.89 
 

x1 and x3 are dependent 

but  they conditionally  
independent given x2.  

Bayesian 
networks 
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The graph factorizes the JPD, including only the 
dependencies of  the graph. 

P ( x 1 , . . . , x n ) = 
n 

Π	


i =1 

P i ( x i | π	

i ) hence, dramatically 
reducing the number of 
parameters. 

π	

i is the set of variables directly connected to xi 

Given a data base with N samples, the graph can be 
inferred using automatic algorithms (NP-hard).  

-67186 

Search and score strategies using the Minimum Description 
Length (MDL) as a quality score metric: 

-65100 

Bayesian 
networks 
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Binary event: Prec>10 Bayes net. algorithm 

New gauges (blue circles in the map) 

Boxplots of 10 random train-test realizations 

Naive model 

Interpolation 

Bayesian net. model 

R
S

A 
(A

U
C

) 
Bayesian Networks. Downscaling 
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Robust SD-methods for temperature in Spain 9

Table 3 Tested predictor combinations, ranked by decreasing complexity; for each combi-
nation, the combinations marked by * have been tested with both the static and dynamic
temporal setup.

Code Predictor variables

P1* SLPd, T850, Q850, U500, V500
P2* SLPd, T850, Q850, Z500
P3* SLPd, T850, Q850
P4* SLPd, T850
P5 SLPd, T2d
P6* T850
P7 T2d
P8 Tmax
P9 Tmin

(not shown). Note that in the latter case, results cannot be further improved
by using the 12 UTC predictor values (not shown).

Figure 7 shows the results for the calibration of the Tmax (columns 1 and
2) and the Tmin (third and fourth column). Along rows one to three, 1) the
Pearson Correlation Coe�cients, 2) the KS-pValues, 3) the biases and 4) the p-
values for testing robustness are shown for whole test period (i.e. no seasonal
separation). In the fifth row, the standard deviations of the monthly biases
are displayed for estimating the season-dependency of the results. In each
matrix, the results for all possible combinations of domains (along columns)
and predictor combinations (along rows) are shown. For reasons of simplicity,
we only take into account the dynamic temporal setup for the Tmax and the
static for the Tmin, respectively.

As shown by the figure, the results are generally better for the Tmax than
for the Tmin and are more sensitive to the predictor choice than to the domain
size. For both Tmax and Tmin, information on the near-surface temperature
(in terms of T2 and Tmax/Tmin) generally yields the best validation results.
Correlation coe�cients and KS-pValues are highest, while the bias and its
associated seasonal fluctuation are negligible. Moreover, the bias is stationary
for anomalously cold/warm years.

Predictive power generally decreases if information on the near-surface
temperature are excluded from the predictor field. In this case, a combination
of SLP and T850 is optimal for the Tmax while combining SLP, T850 and
Q850 works best for the Tmin. However, including Q850 to the predictor field
leads to a loss of robustness (in terms of the bias) for cold/warm years in any
case.

Small domains generally perform better than larger ones, the largest do-
main covering the whole European-North Atlantic sector being worse in any
case. Note that the bias of the analog method (M1a) is especially sensitive
to the predictor and domain choice. Varying the predictor combination for a
given domain or vice-versa changing the domain while keeping the predictor
combination constant, may lead to considerable modifications in the magni-
tude and even sign of the bias (see third row in Figure ??). In terms of the bias,

Geographical domains Consistent Predictors 

SD Methods 

An example in 
Spain: 

PNACC-2012 
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Downscaling Methods 

Downscaling 
methods 



Santander Meteorology Group 
    A multidisciplinary approach for weather & climate 

ºC

-2.0

-1.0

0

1.0

2.0

ºC

-2.0

-1.0

0

1.0

2.0

(a) ºC

-2.0

-1.0

0

1.0

2.0

ºC

-2.0

-1.0

0

1.0

2.0

(b)

(c) (d)

 

 

 

 

 μ  =0.97
 μ=1.01

17

 μ  =0.75
 μ=0.80

17  μ  =-0.47
 μ=-0.53

17

 μ  =-0.85
 μ=-1.08

17

To test the robustness of the SD methods 
we also consider the eight warmer/colder 
years. 
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A k-fold cross-validation (5-fold) approach (1961-2000). 
•  5 independent test samples with 8 years each (32 for train). 
1960 1961 1962 1963 1964 1965 1966       …             1996 1997 1998 1999 2000 

Cross-
validation 

meethodology 
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Callibration and  
Selection of   
SD Methods 

Maximum Temperature (Tmax)
Analogs (M1a) Regression (M3a)

Minimum Temperature (Tmin)
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Fig. 4. Calibration results for the 10 domains (x-axes of each subplot) and 8 predictor com-
binations (y-axes) of each subplot; ‘d’ indicates dynamical configuration of the corresponding
predictors (see the text for more details). Pearson Correlation (first row), KS p–value (sec-
ond row), warm p–value (third row), bias (fourth row), and bias seasonal variability (last
row). The first column corresponds to Tmax and the second to Tmin. White/black marked
cells are used in the text for illustrative purposes.
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Fig. 4. Calibration results for the 10 domains (x-axes of each subplot) and 8 predictor com-
binations (y-axes) of each subplot; ‘d’ indicates dynamical configuration of the corresponding
predictors (see the text for more details). Pearson Correlation (first row), KS p–value (sec-
ond row), warm p–value (third row), bias (fourth row), and bias seasonal variability (last
row). The first column corresponds to Tmax and the second to Tmin. White/black marked
cells are used in the text for illustrative purposes.
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the training/test data, typically used in this type of studies.265

Finally, in order to take into account future seasonal shifts as projected by GCM-scenario266

runs, no season specific models have been considered in this work.267

a. Accuracy268

Accuracy validation scores assess the correspondence of the simulated and observed day-269

to-day temperature sequences, which is the basis of the statistical downscaling approach. The270

Pearson correlation coe�cient is used in this paper for this purpose, although there are other271

popular measure, such as the Root Mean Square Error (RMSE). Note that correlation (r)272

and RMSE are related by the equation RMSE =
p
�2
p

+ �2
o

� 2r�
p

�
o

+ b2 (Murphy 1988),273

where b is the bias and �
p

, �
o

the standard deviation of the prediction and observation,274

respectively. Thus, since the bias of the statistical downscaling methods was found to be275

relative low (see Sec. 5), the correlation can be seen as an standardized version of the RMSE,276

the latter not being shown in this paper. In order to assess the season-dependence of the277

results, correlation coe�cients are calculated both for the annual and season-specific time278

series.279

b. Distributional consistency280

Distributional consistency scores evaluate the downscaling methods’ capability to repro-281

duce the distribution of the target time series. The most popular scores are the bias (mean282

di↵erence) and the ratio of variances. In addition, some studies have focused on the higher283

order moments of the distribution (skewness, kurtosis) (Huth et al. 2003), trying to obtain284

a more complete description of distributional similarity. Note that the observed distribution285

should be reproduced by any SD-method applied in a climate change context in order to286

avoid the post-hoc correction of the downscaled time series —such as bias removal, quantile287

mapping, or output rescaling (Deque 2007),— which would require the additional assumption288
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Fig. 9. Performance of the twelve SD methods for Tmax (first column) and Tmin (second
column) according to the Pearson Correlation Coe�cient (row 1), the KS p–values for annual
and winter series (rows 2 and 3) and the the annual bias and bias seasonal variability (rows
4 and 5); all methods (displayed along the x-axes of each subplot) were configured using the
same optimal combination of predictors and domain (P5: SLP and T2m, Z8: SE Iberia);
see text for details on the construction of the box-and-whiskers plots.
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Fig. 10. Robustness of the SD methods (along the x-axis of the figures) for Tmax (first
column) and Tmin (second column) under warm climate conditions. The first row shows
the box-and-whisker plots for the five k-fold normal test periods, together with a red triangle
indicating the bias of the warm test period. The second row shows the statistical significance
of these di↵erences, as given by the p–values obtained from (1). The last row shows the
warming signal in the late 21st century (defined as the di↵erence of temperatures in the
period 2071-2100 and the control period 1971-2000, considering A1B and 20C3M projections,
respectively) for the ECHAM5 (run3) model.
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Fig. 10. Robustness of the SD methods (along the x-axis of the figures) for Tmax (first
column) and Tmin (second column) under warm climate conditions. The first row shows
the box-and-whisker plots for the five k-fold normal test periods, together with a red triangle
indicating the bias of the warm test period. The second row shows the statistical significance
of these di↵erences, as given by the p–values obtained from (1). The last row shows the
warming signal in the late 21st century (defined as the di↵erence of temperatures in the
period 2071-2100 and the control period 1971-2000, considering A1B and 20C3M projections,
respectively) for the ECHAM5 (run3) model.
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considering the spatial mean of the standardized anomalies at the 17 high-quality grid-315

boxes of Spain02 as reference value. The resulting years were 1995, 1989, 1994, 1997, 1961,316

1990, 1998 and 2000, in decreasing rank order. Applying the analysis to the minimum317

temperatures leads to an identical ranking of the warm years, with the exception of the318

least warmest one. Thus, to keep consistency of the results, we decided to use the same319

period for both variables. The resulting warm anomalies for Tmax and Tmin, w.r.t. the320

remaining 32 years, have a spatial mean value of +0.97 and +0.75 degC, respectively, and321

thus can be taken as surrogates of a possible moderate warming allowing to test the methods322

in conditions similar to those projected by scenario runs for the next few decades.323

In order to quantify whether the bias in the warm period, b
w

, is significantly di↵erent324

from the five biases obtained in the normal test periods, b
k

, k = 1, . . . , 5, (the five folds of the325

cross-validation process) we apply a standard t-test to the mean di↵erence d̄ = 1
5

P5
k=1 dk =326

1
5

P5
k=1(bw � b

k

), in order to test whether this di↵erence is significantly di↵erent from zero.327

Thus, we consider the following test statistic (Dietterich 1998):328

t =

p
5 d̄p

var(d)
; var(d) =

1

4

5X

k=1

(d
k

� d̄)2, (1)329

which follows a t-distribution with 4 degrees of freedom. Although it has been recently330

reported that this approach (k–fold cross validation) may slightly overestimate the variance331

(Markatou 2005), we apply this conservative procedure in order to minimize the type 1332

errors (false detection of positive di↵erences) (DeGroot and Schervish 2002). Note also that333

although five samples could be considered an insu�cient number to estimate the sample334

variance, the k-fold cross-validation approach has shown to provide similar values to the335

more computationally intensive leave-one-out cross-validation, especially when the size of336

the test data becomes large (Markatou 2005), as it is the case in our study.337

Therefore, we will consider the p–value corresponding to a two-sided hypothesis test with338

null hypothesis H0 ⌘ d̄ = 0 from (1) as a measure of robustness of the SD methods in climate339

change conditions. Low values (e.g. below 0.05) document significant di↵erence of the bias340

in warm condition w.r.t. the bias in ‘normal’ conditions. Large values, in turn, indicate an341

13
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