AR R Dpto. Matematica Aplicada y
3 uc Ciencias de la Computacion
|/
Y Santander Meteorology Group i"r..* F
A multidisciplinary approach for weather & climate

UNIVERSIDAD 7 4
DE CANTABRIA CSIC Instituto de Fisica de Cantabria

R practice using data from the ENSEMBLES
Project

Joaquin Bedia

November 6, 2012

B CcosE

First VALUE training school: ”Introduction to Dynamical and Statistical
Downscaling” - Santander (Spain) - 6-15 Nov 2012

Contents

1

Introduction

1.1 Gettinghelp.
1.2 Sample Datasets
1.3 Before starting

Accessing netCDF data
Handling dates

Spatial overlay and interpolation
4.1 Point sampling

4.2 Spatial Overlay with vector maps

4.3 Nearest neighbour interpolation
4.4 Bilinear interpolation

Re-Projecting model grids

5.1 Introduction.
5.2 Rotated coordinates
5.3 Re-projecting data

VALUE-THREDDS data access
6.1 Introduction to THREDDS . .
6.2 THREDDS data download . . .

6.2.1 netCDF subsetting . . .

A practical example

7.1 Analyzing model results
7.1.1 Taylor diagram
7.1.2 Correlation

Summary of R packages used

w w w W

10

14
15
19
21
23

24
24
26
29

37
37
38
39

41
45
45
47

49

1 Introduction

During this practice we will undertake some operations related with the han-
dling, analysis and visualization of climate data in the R environment. To this
aim, we will use several packages that can be useful to this aim (see Section 8
for a quick overview), although the methods and steps followed in this prac-
tice are just examples that can in many cases be accomplished following other
alternative approaches.

1.1 Getting help

Once R is installed, there is a comprehensive built-in help system. At the pro-
gram’s command prompt you can use any of the following:

help.start() general help

help(foo) help about function foo

?foo same thing

apropos ("foo") list all functions containing string foo

example (foo) show an example of function foo

RSiteSearch("foo") searches for help manuals and archived mailing lists

vignette() show available vingettes. Vignettes are optional supplementary
documentation available in some packages

vignette("foo") show specific vignette

1.2 Sample Datasets

R comes with a number of sample datasets that you can experiment with. Type
data() to see the available datasets. The results will depend on which packages
are loaded. Type help(datasetname) for details on a sample dataset. For
instance, the world map that we will use during this practice is a built-in dataset
of package maptools. We load it first of all:

> library(maptools)
> data(wrld_simpl) # loads the world map dataset
> as(wrld_simpl,"SpatialLines") -> wrl

1.3 Before starting

In addition, we will use some example files of the ENSEMBLES database. For
convenience, these files will be provided and stored locally into your local ma-
chine before starting this practical session. Ideally, these files could be directly
downloaded from the ENSEMBLES site using the appropriate R tools. However,
because of the size of the files and to avoid network problems, it will be faster
to have this files locally stored. We will later illustrate remote data download
in Section 6 using the VALUE-THREDDS data server capabilities.
During the next sections, the example data will be stored at:

"C:/VALUE/files/"

First of all, we will define our working directory using the setwd command. If
you want to specify another different working directory, now it is the moment to
do it. However, please conserve a sub-directory into the working directory named
“files” with the data provided inside, for full reproducibility of the example
scripts presented.

> setwd("C:/VALUE/")
> getwd()

[1] "C:/VALUE"

2 Accessing netCDF data

During this practice we will use the utilities of the ncdf package for netCDF
data access. However, it is important to note that the ncdf package is designed
to work with the netCDF library version 3'. Newer package ncdf4 is designed
to work with the netCDF library version 4, and supports features such as com-
pression and chunking. Unfortunately, for various reasons the ncdf4 package
must have a different API than the ncdf package.

In this practice, we will use the ncdf interface, partly because data stored
in the ENSEMBLES database correspond to the netCDF version 3, and also
because the installation of ncdf4 is not as straighforward as ncdf, because it
is not available at the R—CRAN repository at the moment of writing this tutorial
(you can find further details on ncdf4 installation under different platforms at
this link: http://cirrus.ucsd.edu/ pierce/ncdf/).

In order to acces data stored in a netCFD, first of all we need to open a
connection with the file. This is done with the open.ncdf command:

> library(ncdf)

> open.ncdf ("./files/CNRM-RM4.5_CTL_ERA40_DM_50km_1991-2000_pr.nc") -> nc

Once the connection is open, we can obtain some prelimary information
about a netCDF file, including the variables and dimensions it contains:

> print.ncdf (nc)

[1] "file ./files/CNRM-RM4.5_CTL_ERA40_DM_50km_1991-2000_pr.nc has 3 dimensions:"

[1] "x Size: 93"

[1] "y Size: 101"

[1] "time Size: 3653"

[1] N e e e e e e e e e e e e —— n

[1] "file ./files/CNRM-RM4.5_CTL_ERA40_DM_50km_1991-2000_pr.nc has 4 variables:"

[1] "float lon[x,y] Longname:longitude Missval:1e+30"
[1] "float lat[x,y] Longname:latitude Missval:1e+30"

[1] "char Lambert_conformal[] Longname:Lambert_conformal Missval:NA"

[1] "float pr(x,y,time] Longname:Precipitation Missval:1le+30"

Isee here for more information on the R interfaces to netCDF: http://cirrus.ucsd.edu/
“pierce/ncdf/

In order to read the data from the netCDF, we will use the get.var.ncdf
function. You can type ?get.var.ncdf to see all details about the function. In
this example we will illustrate a simple example using an ENSEMBLES file of
precipitation from the CNRM-RM4.5 RCM coupled to ERA-40. The three most
important arguments of the get.var.ncdf function, apart from specifying the
file to read from, are the varid argument, which specifies the variable to be read,
and the start and count arguments, which are vectors of indices whose length
is equal to the number of dimensions the variable has, indicating where start to
reading and the count of values to read along each dimension respectively.

In order to know the varid value (which can be either a number or a string),
we can for instance look into the nc object:

> names (nc$var)

[1] "lon" "lat"
[3] "Lambert_conformal" nprn

> str(ncvarpr)

List of 16
$ id : int 7
$ name : chr "pr"
$ ndims : int 3
$ natts : int 6
$ size : int [1:3] 93 101 3653
$ prec : chr "float"
$ dimids :num [1:3] 1 2 3
$ units : chr "kg m-2 s-1"
$ longname : chr "Precipitation"
$ dims : listQ
$ dim :List of 3
..$:List of 8
$ name : chr "x"
$ len : int 93
..$ unlim : logi FALSE
..$ id : int 1
$ dimvarid : num 1
$ units : chr "km"
$ vals : num [1:93(1d)] 1 23456789 10 ...
$ create_dimvar: logi TRUE
.. ..— attr(x, "class")= chr "dim.ncdf"
..$:List of 8
$ name : chr "y"
$ len : int 101
..$ unlim : logi FALSE
..$ id : int 2
$ dimvarid : num 2
$ units : chr "km"
$ vals : num [1:101(1d)] 1 234567 89 10 ...
$ create_dimvar: logi TRUE

attr(x, "class")= chr "dim.ncdf"

..$:List of 8

..$ name : chr "time"
..$ len : int 3653
..$ unlim : logi TRUE
..$ id : int 3
..$ dimvarid : num 5
..$ units : chr "days since 1950-01-01"
..$ vals : num [1:3653(1d)] 14975 14976 14977 14978 14979 ...
..$ create_dimvar: logi TRUE
. ..— attr(x, "class")= chr "dim.ncdf"
varsize : int [1:3] 93 101 3653
unlim : logi TRUE
missval : num 1e+30

hasAddOffset: logi FALSE
hasScaleFact: logi FALSE
attr(*x, "class")= chr "var.ncdf"

| A A &H H P

> ncvarprid
(11 7

From the above lines we know that the variable name is “pr” and that it is
identified with number 7. The same can be done in order to retrieve information
about the dimensions:

> str(nc$dim)

List of 3
$ x :List of 8

..$ name : chr "x"
..$ len : int 93
..$ unlim : logi FALSE
..$ id : int 1
..$ dimvarid : num 1
..$ units : chr "km"
..$ vals : num [1:93(1d)] 1 23456789 10 ...
..$ create_dimvar: logi TRUE

attr(x, "class")= chr "dim.ncdf"

&~
< .

:List of 8
..$ name : chr "y"
..$ len : int 101
..$ unlim : logi FALSE
..$ iad : int 2
..$ dimvarid : num 2
..$ units : chr "km"
..$ vals :num [1:101(1d)] 1 234567 8 9 10 ...
..$ create_dimvar: logi TRUE

..— attr(x, "class")= chr "dim.ncdf"
$ time:List of 8

..$ name : chr "time"

..$ len : int 3653

..$ unlim : logi TRUE

..$ id : int 3

..$ dimvarid : num 5

..$ units : chr "days since 1950-01-01"

..$ vals : num [1:3653(1d)] 14975 14976 14977 14978 14979 ...
..$ create_dimvar: logi TRUE

attr(x, "class")= chr "dim.ncdf"
> names (nc$dim)
[1] "X" llyll ||timel|

So precipitation is coded as “pr” in the file (this nomenclature is consistent
among all the ENSEMBLES datasets), as is coded as variable 7. In order to
access all precipitation data stored, we could just type:

> get.var.ncdf (nc=nc, varid="pr") -> pr.cnrm.1
Alternatively, the index of the variable can be indicated:

> get.var.ncdf (nc=nc, varid=7) -> pr.cnrm.2
> identical(pr.cnrm.1, pr.cnrm.2)

[1] TRUE

If we look at the structure of the data, we will find that data are arranged
in a 3-dimensional array:

> str(pr.cnrm.1)

num [1:93, 1:101, 1:3653] 7.15e-06 1.10e-06 4.65e-07 4.26e-07 2.10e-07 ...

> class(pr.cnrm.1)
[1] "array"

> dim(pr.cnrm.1)
[1] 93 101 3653

Basically, the information is arranged in a “cube”, in which the first two
dimensions indicate the position of the observations in the space (x and y coor-
dinates), and the third dimension corresponds to time, which in this particular
case it has a length of 3653 days (10 years, 1991-2000). Remember that you can
retrieve all the information about this variable by typing:

> str(ncvarpr)

List of 16

$ id : int 7

$ name : chr "pr"

$ ndims : int 3

$ natts : int 6

$ size : int [1:3] 93 101 3653

$ prec : chr "float"
$ dimids :num [1:3] 1 2 3
$ units : chr "kg m-2 s-1"
$ longname : chr "Precipitation"
$ dims : listO
$ dim :List of 3
..$:List of 8
$ name : chr "x"
$ len : int 93
..$ unlim : logi FALSE
..$ id :int 1
$ dimvarid : num 1
$ units : chr "km"
$ vals : num [1:93(1d)] 1 23456789 10 ...
$ create_dimvar: logi TRUE
.. ..— attr(x, "class")= chr "dim.ncdf"
..$:List of 8
$ name : chr "y"
$ len : int 101
..$ unlim : logi FALSE
..$ id : int 2
$ dimvarid : num 2
$ units : chr "km"
$ vals : num [1:101(1d)] 1234567 8 9 10 ...
$ create_dimvar: logi TRUE
.. ..— attr(x, "class")= chr "dim.ncdf"
..$:List of 8
$ name : chr "time"
$ len : int 3653
..$ unlim : logi TRUE
..$ id : int 3
$ dimvarid : num 5
$ units : chr "days since 1950-01-01"
$ vals : num [1:3653(1d)] 14975 14976 14977 14978 14979 ...
$ create_dimvar: logi TRUE
. ..— attr(x, "class")= chr "dim.ncdf"
varsize : int [1:3] 93 101 3653
unlim : logi TRUE
missval : num 1e+30

hasAddOffset: logi FALSE
hasScaleFact: logi FALSE
attr(x, "class")= chr "var.ncdf"

| A A B H Ph

In order to use the start and count arguments, first of all we need to know
the length of the vector defining the dimensions of the variable, that in this case
is equal to 3, arranged in the form [x,y,time] (note that the time dimension is
always the last):

> length(ncvarpr$dim)

(11 3

> str(ncvarpr$dim)

List of 3
$:List of 8
..$ name : chr "x"
..$ len : int 93
..$ unlim : logi FALSE
..$ id :int 1
..$ dimvarid : num 1
..$ units : chr "km"
..$ vals : num [1:93(1d)] 1 234567 89 10 ...
..$ create_dimvar: logi TRUE
..— attr(x, "class")= chr "dim.ncdf"
$:List of 8
$ name : chr "y"
$ len : int 101
..$ unlim : logi FALSE
..$ id : int 2
$ dimvarid : num 2
$ units : chr "km"
$ vals : num [1:101(1d)] 1 234567 8 9 10 ...
$ create_dimvar: logi TRUE
..— attr(*, "class")= chr "dim.ncdf"
$:List of 8
$ name : chr "time"
$ len : int 3653
..$ unlim : logi TRUE
..$ id : int 3
$ dimvarid : num 5
$ units : chr "days since 1950-01-01"
$ vals : num [1:3653(1d)] 14975 14976 14977 14978 14979 ...
$ create_dimvar: logi TRUE

attr(x, "class")= chr "dim.ncdf"

For instance, suppose we are interested only in the first year of data (i.e. the
first 365 days). This would be indicated as follows:

> get.var.ncdf(nc, varid="pr", start=c(1,1,1),
+ count=c(-1,-1,365)) -> pr.slicel
> str(pr.slicel)

num [1:93, 1:101, 1:365] 7.15e-06 1.10e-06 4.65e-07 4.26e-07 2.10e-07 ...

Note that we have the “-1” value the count means “all entries along this
dimension”. Similarly, we can access the first year of one single point:

> get.var.ncdf (nc, varid="pr", start=c(15,51,1),
+ count=c(1,1,365)) -> pr.slice2
> str(pr.slice2)

num [1:365(1d)] 1.55e-04 2.43e-05 1.21e-04 1.09e-04 7.99e-05 ...

Or a particular slice or region of interest (e.g. a 10 x 10 grid cells region):

> get.var.ncdf (nc, varid="pr", start=c(39,35,1),
+ count=c(10,10,-1)) -> pr.slice3
> str(pr.slice3)

num [1:10, 1:10, 1:3653] 0.00 3.09e-08 1.92e-07 1.42e-06 1.11e-06 ...

These are the very basics of netCDF reading. During this practice we will
use these commands frequently, although for the sake of simplicity we will not
focus of slicing. By default, the get.var.ncdf (nc, varid="foo"), will retrieve
all data, without slicing.

Next, some plotting examples are presented, that will be explained in more
depth during the next steps of the practical session. The spatial slices taken
in the previous lines are displayed. Note that we convert the units from the
original (kg x m~2 x s71) to mm.

get.var.ncdf (nc, varid="x") -> x
get.var.ncdf (nc, varid="y") ->y
library(RColorBrewer)
brewer.pal(9, "Blues") -> colors
apply(pr.slicel, MARGIN=c(1,2),
FUN=sum) -> pr.accum
pr.accum*3600%24 -> pr.accum.mm

vV + V V V V V

image(x,y,pr.accum.mm, col=colors)
contour(x,y,pr.accum.mm, nlevels=12,
add=TRUE)
title(main="Total precipitation 1991 (mm)")
rect(xleft=x[39], xright=x[59], ybottom=y[35],
ytop=y[65], border="red", lwd=2)
text(49,62,"Slice 3",col="red", cex=1.5)
points(15,51, pch=10, col="red", cex=1.5)
text(15,60,"Point Selection",col="red",cex=.9)

V V.V + VYV + VvV V

One final important remark: always a net CDF file is opened via the open.ncdf
command, the connection remains open until it is explicitly closed. Forgetting
this may give raise to problems because there is a maximum number of con-
nections that R can maintain open. So after extracting all the necessary data,
remember to close the file by typing:

> close.ncdf (nc)

[[1]1]
(11 6

3 Handling dates

There are many tutorials and information regarding the use of chronological
objects in R, to which the interested practitioners are referred?. We next show

%see e.g. http://statistics.berkeley.edu/classes/s133/dates.html for a qwick
overview

10

Total precipitation 1991 (mm)

100

80

60

40

20

Figure 1: Example of netCDF reading and slice selection.

just a few examples that may result useful for handling time series data from
RCM simulations.

Time is a dimension that can be easily extracted from a netCDF file, using
the get.var.ncdf command previously shown. In this example, we will retrieve
the time dimension of the KNMNI-RACMO2.

> list.files("./files", pattern="KNMI", full=TRUE) -> target.file
> library(ncdf)
> open.ncdf (target.file) -> nc.knmi

When we extract the time dimension, we get a numeric vector that does
not contain any chronological information. However, we might be interested in
analysing our data using some time aggregation, for instance monthly or seasonal
analyses. There are different approaches to convert this numeric vector to a
chronological vector of dates. One possibility is to convert the numeric vector
to a "Date" class object representing calendar dates using as.Date. First of all
we need to know the units:

> nc.knmidimtime$units
[1] "days since 1950-01-01 00:00:00"
> get.var.ncdf (nc.knmi, varid="time") -> ti

> str(ti)

11

num [1:3653(1d)] 14976 14976 14978 14978 14980 ...

> as.Date(ti, origin=c("1950-01-01")) -> dates
> class(dates)

[1] "Date"

> str(dates)

Date[1:3653], format: "1991-01-01" "1991-01-02" "1991-01-03"
> range(dates)

[1] "1991-01-01" "2000-12-31"

> # Lon/Lat data
> get.var.ncdf (nc.knmi, varid="lon") -> lon
> get.var.ncdf (nc.knmi, varid="lat") -> lat

Now the maximum temperature data can be represented as a time series:

> get.var.ncdf (nc.knmi, varid="tasmax") -> tx

Generates Fig.2
plot(dates, tx[54,21,], ty='1l', col=4, ylab="degree K")
title(main=paste("Relative max temp from",
dates[1],"to",dates[length(dates)]))
mtext (paste("Point",round(lon[54,21],2),
"deg E - ",round(lat[54,21],2),"deg N"),line=.3)

+ V + VvV Vv V

We can directly compute months, weeks, years, quarters, julian days and
many other chronological objects. In addition, package chron provides further
utilities. Note that months, quarters and weekdays are generics defined in
package base which also provides methods for objects of class "Date". These
methods return character rather than factor variables as the default methods
in chron do. To take advantage of the latter, Date objects can be converted to
dates objects using as.chron.

> library(chron)
> months(dates) -> month.default
> class(month.default)

[1] "character"

> months(as.chron(dates)) -> month.chron
> class(month.chron)

[1] "ordered" "factor"
> levels(month.chron)

[1] IlJanll llFebll IlMarll llAprll IlMayll] Junll IlJulll llAugll IlSepll
[10] "OCt" IINOVII IlDecll

12

Relative max temp from 1991-01-01 to 2000-12-31
Point 20.15 deg E - 38.96 deg N

295 300 305
| | |

degree K
290
|

285
|

280
|

T T T T T
1992 1994 1996 1998 2000

dates

Figure 2: Daily time series of maximum surface air temperature taken at a
random point of the RCM grid.

Seasonal representation can be also easily achieved. We create a vector of
seasons and then convert it to an ordered factor, so the levels are always repre-
sented in chronological order beggining in winter (DJF), rather than alphabetical
order.

rep(NA, length(month.chron)) -> seasons

seasons [grep("Dec|Jan|Feb", month.chron)] <- "DJF"

seasons [grep("Mar|Apr |May", month.chron)] <- "MAM"

seasons [grep("Jun| Jul |Aug", month.chron)] <- "JJA"

seasons [grep("Sep|0ct|Nov", month.chron)] <- "SON"

factor(seasons, levels=c("DJF","MAM","JJA","SON")
, ordered=TRUE) -> seasons

+ V V V V VvV VvV

In the following example, mean maximum temperature is mapped:

> # Generates Fig.3

> library(RColorBrewer)

> get.var.ncdf (nc.knmi, varid="rlon") -> x

> get.var.ncdf (nc.knmi, varid="rlat") ->y

> colorRampPalette(rev(brewer.pal(9,"Spectral")))-> color.palette
> par(mfrow=c(2,2))
> for (i in 1:length(levels(seasons))) {

13

which(seasons==levels(seasons) [i]) -> season.index
apply(tx[, ,season.index], FUN=mean, MAR=c(1,2)) -> z
image(x,y,z, col=color.palette(21), asp=1,
main=paste(levels(seasons) [i]))
contour(x,y,z,nlevels=15,add=TRUE)

+ 4+ 4+ + 4+

20

10

-20 -10 O

20
20

10
10

y
0

-20 -10
-20 -10 O

-30 -20 -10 0 10 20

Figure 3: Mean maximum temperature of the period 1991-2000, aggregated by
seasons

> close.ncdf (nc.knmi)

[[1]1]
(1] 6

4 Spatial overlay and interpolation

In the following examples we will use the SMHI-RCA RCM grid, a set of data
points corresponding to weather stations in Spain and the regular grid of EOBS
of 0.5 degree resolution, in order to perform a number of frequent spatial op-
erations like finding the closest grid point to a given location and interpolate
the irregular lon-lat RCM grid onto the EOBS regular grid using either near-
est neighbours or bilinear interpolation. First of all the required datasets are
loaded:

14

> # These are the files in our working directory
> list.files("./files", full.names=TRUE)

[1] "./files/CNRM-RM4.5_CTL_ERA40_DM_50km_1991-2000_pr.nc"

[2] "./files/elev_0.50deg _reg_v4.0.nc"

[3] "./files/KNMI-RACMO2_CTL_ERA40_DM_50km_1991-2000_tasmax.nc"
[4] "./files/SMHIRCA_CTR_ERA40_DM_50km_1991-2000_tasmax.nc"

[6] "./files/Stations_Spain.txt"

[6] "./files/TX_EOBS_0.50deg_IP.nc"

Read coordinates of weather statioms

read.table("./files/Stations_Spain.txt",
col.names=c("lon_st","lat_st")) -> st.coords

Open SMHI data

(list.files("./files", full.names=TRUE,
pattern="SMHI") -> target.file)

+ V V + VvV VvV

[1] "./files/SMHIRCA_CTR_ERA40_DM_50km_1991-2000_tasmax.nc"

> open.ncdf (target.file) -> nc.smhi

> # Open EOBS grid

> (list.files("./files", full.names=TRUE,

+ pattern="0.50deg") -> target.file)

[1] "./files/elev_0.50deg _reg_v4.0.nc"
[2] "./files/TX_EOBS_0.50deg_IP.nc"

open.ncdf (target.file) -> nc.eobs

get.var.ncdf (nc.eobs, "longitude") -> lon.eobs
get.var.ncdf (nc.eobs, "latitude") -> lat.eobs
get.var.ncdf (nc.smhi, "lon") -> lon.rcm
get.var.ncdf (nc.smhi, "lat") -> lat.rcm
get.var.ncdf (nc.smhi, "tasmax") -> tx

V V V V V V

Next, the mean maximum temperature is calculated and the arrays of geo-
graphical coordinates are vectorized:

apply(tx, MAR=c(1,2), FUN=mean) -> tx.mean
as.vector(lon.rcm) -> x
as.vector(lat.rcm) -> y
as.vector(tx.mean) -> z

vV V V V

4.1 Point sampling

Usually, we need to find where on the RCM grid are certain points or specifical
locations, such as meteorological weather stations. To this aim, knowing the
coordinates of the reference location the aim is finding the closest RCM grid
point to that location. This can be achieved in many different ways in R, for
instance by the calculation of distance matrices from which the smallest value
represents the nearest neighbour. In this example we will use the spDistsN1
function in package sp, for which we can specify both euclidean and great circle
distances. The latter option is more appropriate in this case, given that we

15

are measuring distances along the surface of the Earth’s geoid (the WGS84
ellipsoid, in this case), although in practice the results are similar because the
differences between the input and the output grid are ususally not that large to
have any measurable effect. Note that the function spDistsN1 works faster when
euclidean distances are computed. To use the function, we need the coordinates
as a matrix of 2D points.

> cbind(x, y) -> grid2D.rcm
as.matrix(st.coords) -> st.coords

\'4

Generates Figéd

plot(grid2D.rcm, cex=.4, pch=3,col="grey",
asp=1,xlim=c(-25,20), ylim=c(30,55))

lines(wrl)

points(st.coords, pch=22, col="red", cex=.6)

title(main="Weather Stations in Spain")

legend ("bottomleft", c("RCM grid","Stations"),
pch=c(3,22), col=c("grey","red"))

+ VvV V VYV + VYV

Weather Stations in Spain

o |
©
o _|
n
>
o |
<
o |
(2]
RCM grid
O Stations

T
-20

Figure 4: RCM grid and weather station points

For instance, in order to find the closest RCM grid point to a randomly
chosen station (for instance station 17 of the 2D matrix of coordinates), we can
proceed as follows:

> st.coords[17,] # Coordinates of the reference point

16

lon_st 1lat_st
-4.7544 41.6408

> spDistsN1(pts=grid2D.rcm, pt=st.coords[17,],
+ longlat=TRUE) -> f
> str(f)

num [1:8075] 1638 1624 1612 1600 1590 ...

Object £ is a long vector, with a length equal to the number of points in the
RCM grid. It contains the distance of the reference location to each RCM grid
point (in degrees or km depending on the value of the argument longlat). The
position in which the minimum distance is found corresponds to the index of
the RCM coordinate:

> which.min(f) -> index
> grid2D.rcm[index,] # This is the nearest neighbour

X y
-4.577028 41.697369

find.nn is an example wrapper for the spDistsN1 to perform this task,
requiring as argument the 2D matrices of the input and output coordinates.
The argument verbose is a logical flag indicating wether the function should
print on screen the progress of the computation or not. The function returns
a list with the grid coordinates corresponding to the nearest location and an
index of positions in ordert to retrieve data from the RCM.

> find.nn <- function(points, grid, verbose = FALSE) {

+ pt <- points

+ gr <- grid

+ rep(NA, nrow(pt)) -> index

+ for (i in 1l:nrow(pt)) {

+ if (isTRUE (verbose)) {

+ print (paste("Processing point", i,
+ "out of", nrow(pt)))

+ }

+ which.min(spDistsN1(pts=gr,

+ pt=pt[i, 1)) -> index[il

+ }

+ return(list("coords"=gr[index,], "index"=index))
+ 3

We apply this function to the set of coordinates of stations:

> find.nn(st.coords, grid2D.rcm) -> st.grid.coords
> str(st.grid.coords)

List of 2
$ coords: num [1:50, 1:2] 1.09 2.22 -2.07 -2.82 -3.97 ...
..— attr(x, "dimnames")=List of 2
..$: NULL
..$: chr [1:2] "x" "y"

$ index : int [1:50] 2401 2403 2907 2991 2989 2988 3156 3071 3152 3152 ...

17

For instance, the coordinates of the corresponding RCM points are retrieved
as follows:

> st.grid.coords$coords

X y
[1,] 1.0898490 41.03489
[2,] 2.2177310 41.22669
[3,] -2.0718780 43.16106
[4,] -2.8155770 43.46550
[5,] -3.9711630 43.21692
[6,] -4.5451889 43.08785
[7,] -6.0654202 43.65566
[8,] -5.8741679 43.23814
[9,] -8.3438358 43.07521
[10,] -8.3438358 43.07521
[11,] -8.4894915 42.09788
[12,] -7.5759468 42.81058
[13,] -6.8152518 42.54042
[14,] -7.3760829 42.39590
[15,] -7.9341698 42.24837
[16,] -2.7265680 41.65311
[17,] -4.5770278 41.69737
[18,] -4.2289052 40.85715
[19,] -4.2289052 40.85715
[20,] -5.6894889 41.42963
[21,] -5.6855011 42.82031
[22,] -5.5068932 41.01162
[23,] -1.8504280 40.92412
[24,] -3.1219220 41.10886
[25,] -3.5094891 40.56312
[26,] -3.5094891 40.56312
[27,] -4.0938892 39.04705
[28,] -6.9241538 38.78541
[29,] -4.8143101 37.94728
[30,] -3.4407020 37.36354
[31,] -3.9602890 37.23755
[32,] -5.6808510 37.26005
[33,] -5.6808510 37.26005
[34,] -6.0184102 36.70522
[35,] -5.6698651 35.87127
[36,] -2.0938799 36.76035
[37,] -0.8141651 37.94984
[38,]1 -1.8703920 37.72413
[39,] -0.4224014 38.48448
[40,] -0.4224014 38.48448
[41,] -2.0927370 39.95975
[42,] -0.7055645 39.33645
[43,]1 -0.1617279 39.44419
[44,] -2.4851489 42.61928

18

[45,] -1.7541070 42.31257
[46,] -1.2931440 41.03826
[47,] -0.4615669 42.11021
[48,] 0.5286503 40.93419
[49,] 2.7031560 39.50598
[50,] 4.3581529 39.76140

And these are the corresponding mean temperature RCM values previously
calculated:

> z[st.grid.coords$index]

[1] 291.7770 290.7250 289.3575 288.8829 288.2719 286.5146
[7] 288.0437 286.3255 289.0548 289.0548 289.4470 287.7225
[13] 285.9164 286.9739 288.2026 286.1185 290.0869 288.5888
[19] 288.5888 289.6334 284.5639 288.5835 286.6655 287.4188
[25] 290.2802 290.2802 291.7511 293.9595 294.9286 290.5398
[31] 292.3596 296.2580 296.2580 296.1519 293.6458 292.4078
[37] 294.3693 292.6831 293.4700 293.4700 288.8154 293.3367
[43] 291.5201 288.3678 289.4001 287.7087 289.9821 293.1815
[49] 293.3735 291.5365

4.2 Spatial Overlay with vector maps

A typical operation is to select a certain region, that can be defined either
by a rectangular window or using a vector layer defining any other shape, for
instance the country boundaries or a land mask. In the next step we illustrate
how to perform simple overlay operations in order to extract domains of interest
using vectorial masks. To this aim, we will explore the capabilities of the over
methods in package sp.

Note that one requirement of over is that both spatial objects bear identical
PROJ.4 definition (see Section 5.3). To this aim, the 2D matrix of coordinates
is converted to a spatial object, in this case a SpatialPoints object (type
?sp: :over for further details). The definition of a projections will be addressed
in more detail in Section 5.3, where the following steps are further explained.

> proj4string(wrld_simpl)
[1] " +proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs +towgs84=0,0,0"

> SpatialPoints(grid2D.rcm) -> spPoints.rcm
> proj4string(wrld_simpl) -> proj4string(spPoints.rcm)

The following overlay operation returns a data.frame containing the at-
tributes of the world map for each of the 32300 RCM points:

> over(spPoints.rcm, wrld_simpl) -> ov

> str(ov)

'data.frame': 32300 obs. of 11 variables:

$ FIPS : Factor w/ 244 levels "","AC","AE","AF",..: 555 ...
$ IS02 : Factor w/ 246 levels "AD","AE","AF",..: 61 61 61 ...

19

$ IS03 : Factor w/ 246 levels "ABW","AFG","AGO",..: 64 64 ...
$ UN :int 12 12 12 12 12 12 12 12 12 12 ...

$ NAME : Factor w/ 246 levels "Aaland Islands",..: 4 4 4 4 ...
$ AREA : int 238174 238174 238174 238174 238174 238174 ...

$ POP2005 : int 32854159 32854159 32854159 32854159 ...

$ REGION cint 2222222222 ...

$ SUBREGION: int 15 15 15 15 15 15 15 15 15 15 ...

$ LON :num 2.63 2.63 2.63 2.63 2.63 ...

$ LAT : num 28.2 28.2 28.2 28.2 28.2 ...

For instance, these are the RCM points falling in Spain:

\'4

which (ov$§NAME=="Spain") -> sp.index

Generates Fig.b5

plot(grid2D.rcm, asp=1, pch="+", col="grey",
xlim=c(-25,20), ylim=c(30,55), cex=.4)

points(grid2D.rcm[sp.index,], asp=1, pch="+",
col="red", cex=.4)

lines(wrl)

60
|

50
|

40

30
|

Figure 5: Example of Spatial overlay: SMHI-RCA lon-lat grid of 0.5 degrees
clipped to Spain

20

4.3 Nearest neighbour interpolation

The nearest neighbor algorithm selects the value of the nearest point and does
not consider the values of neighboring points, yielding a piecewise-constant in-
terpolant. This is often needed in climate research in order to preserve unaltered
the original values of the climate model simulations when passing from one grid
to another. It is conceptually the same as the point sampling done before, al-
though in practice its implementation is slightly different, because not always
retrieving the nearest points of the output grid produces a regular grid (for in-
stance, two adjacenbt points in an irregularly distributed grid may have as their
nearest neighbour the same point of the output regular grid, thus leading to
“gaps” in the output grid).

One possible approach is retaining only those output grid points that fall
inside the domain of the input grid, and compute for each output grid point
the closest input grid point. To this aim, we first define a convex hull (i.e.
the smallest convex polygon that contains all input grid points), in order to
reduce the number of points to compute. This can be easily computed using the
function gConvexHull of package rgeos. Then, we perform an overlay operation
of the output grid and the convex hull, to retain those points inside the domain:

> library(rgeos)
> gConvexHull(SpatialPoints(grid2D.rcm)) -> ch
> class(ch)

[1] "SpatialPolygons"
attr(, "package")
[1] n Sp n

expand.grid(lon.eobs, lat.eobs) -> grid2D.eobs
as.matrix(grid2D.eobs) -> grid2D.eobs
over(SpatialPoints(grid2D.eobs), ch) -> ovr
grid2D.eobs[which(is.na(ovr)==FALSE),] -> eobs.clip

V V V V

Generates Fig.6

plot(grid2D.eobs, pch=3, col="grey", cex=.1, asp=1)

as(ch, "SpatialLines") -> hull

points(eobs.clip, pch=3, col="blue", cex=.1)

lines(hull, col="red", lwd=2)

lines(wrl)

legend ("bottomright",c("EOBS grid","Clipped Area",
"convex hull"), pch=c(3,3,0),

col=c("grey","blue","red"), bg="white")

+ + VV V V V VYV

In order to implement this procedure, We will write a function called interp.nn,
taking as arguments the 2D matrices of coordinates of the input and output grids
and the values to represent (z). If z is not provided, the function will return
the interpolated grid.

> interp.nn <- function(input.grid, output.grid, z = NULL, verbose = TRUE)

+ ig <- as.matrix(input.grid)
+ og <- as.matrix(output.grid)
+ z <- z

21

100
|

Var2

EOBS grid
+ Clipped Area
o - O convex hull
— i
T T T T T T
-40 -20 0 20 40 60

Figure 6: The EOBS grid of 0.5 degree resolution clipped to the convex hull
defining the extent of the RCM grid

v <- verbose
if (is.null(z) == FALSE) {
if (length(z) !'= nrow(ig)) {
stop(paste("Length of z",length(z),
"does not match input grid size",nrow(ig)))

}

gConvexHull (SpatialPoints(ig)) -> ch
over(SpatialPoints(og), ch) -> ovr
oglwhich(is.na(ovr) == FALSE),] -> og.clip
rep(NA,nrow(og.clip)) -> ind
for (i in 1:nrow(og.clip)) {

if (isTRUE(v)) {

print (paste("Processing point", i, "out of",
nrow(og.clip)))

}

which.min(spDistsN1(pts=ig, pt=og.clipl[i, 1)) -> ind[i]
}

if (is.null(z)) {
z <- "Not provided"

R T T T T T T S e S S T

}

22

+ else {

+ z[ind] -> z

+ }

+ return(list("Index"=ind, "Grid"=og.clip, "z"=z))
+ 7

In the following lines of code we will apply the function interp.nn to inter-
polate the SMHI-RCA RCM lon-lat grid onto the regular grid of EOBS.

> interp.nn(grid2D.rcm, grid2D.eobs, z,
+ verbose=FALSE) -> nn.grid

The function nn.grid returns a list with three elements:
Index The index of the positions (rows) of the input grid in th eoutput grid
Grid The 2D matrix of the coordinates of the output grid

z The values of the variable z at each output grid location

> str(an.grid)
List of 3
$ Index: int [1:11402] 86 87 3 4 56 8 9 10 11
$ Grid : num [1:11402, 1:2] -4.75 -4.25 -3.75 -3.25 ...
..— attr(*, "dimnames")=List of 2

..$: NULL
.. ..$: chr [1:2] "Varil" "Var2"
$ =z : num [1:11402] 305 305 305 305 306 ...

We next map the resulting nearest neighbour interpolation:

> cbind.data.frame(nn.grid$Grid, "TX"=nn.grid$z) -> df

> coordinates(df) <- c(1,2)

> gridded(df) <- TRUE

> colorRampPalette(rev(brewer.pal(11,"Spectral"))) -> col
> list("sp.lines", wrl, col="blue") -> 11

\'4

Generates Fig.7
spplot(df, col.regions=col(21), sp.layout=list(1l1),
scales=1list (draw=TRUE), main="NN interpolation")

+ Vv

4.4 Bilinear interpolation

There are different R packages to perform bilinear and bicubic interpolation in
R, like akima or fields, the latter also accompanied by didactic commented
source files?. In this example we will use the interp function of package akima,
intended for the interpolation of irregularly spaced data, in order to perform
bilinear interpolation of the lon-lat geographical grid of the SMHI-RCA RCM
onto the EOBS 0.5 degree regular grid.

3http://www.image.ucar.edu/ nychka/Fields/Source/R/

23

NN interpolation

Figure 7: SMHI-RCA model output interpolated onto the EOBS regular grid of
0.5 degrees using nearest neighbor interpolation.

+ Vv

vV + + VvV V

>

library(akima)
interp.old(x=x, y=y, z=z, xo=lon.eobs,
yo=lat.eobs) -> interp.eobs.grid

Generates Fig.8
image(interp.eobs.grid, asp=1, ylim=c(20,75),
x1im=c(-40,60), col=col(21),
main="Bilinear interpolation")
lines(wrl, col="blue")

close.ncdf (nc.smhi)

[[1]1]
(11 6

5

Re-Projecting model grids

5.1 Introduction

Ideally in dynamical climate modelling, the map projection and its accompany-
ing parameters should be chosen to minimize the maximum distortion within

24

Bilinear interpolation

80
|

60
|

20
|

Figure 8: SMHI-RCA model output interpolated onto the EOBS regular grid of
0.5 degrees using bilinear interpolation.

the area covered by the model grids, since a high amount of distortion, evi-
denced by map scale factors significantly different from unity, can restrict the
model time step more than necessary®. This is the reason the native RCM
grids are referenced to different types of projections. As a general guideline,
the polar stereographic projection is best suited for high-latitude domains, the
Lambert conformal projection is well-suited for mid-latitude domains, and the
Mercator projection is good for low-latitude domains or domains with predom-
inantly west-east extent. The cylindrical equidistant projection is required for
global simulations, although in its rotated aspect (i.e., when pole coordinates are
shifted) it can also be well-suited for regional domains anywhere on the earth’s
surface. Among the ENSEMBLES RCM’s, both the Lambert Conformal and
the rotated pole (Mercator oblique) can be found.

In this practice we illustrate how to proceed in R when data need to be
re-projected. We will use the resources of the PROJ.4 library, constructed for
performing conversions between cartographic projections. The library is based
on the work of Gerald Evenden at the USGS, but is now an OSGeo project
maintained by Frank Warmerdam®. The library also ships with executables for
performing these transformations from the command line, that we will use from

4WPS WRF-ARW V3: User’s Guide 3-10, http://www.mmm.ucar .edu/wrf/users/docs/
user_guide_V3/ARWUsersGuideV3.pdf
Shttps://trac.osgeo.org/proj/

25

the R environment.

5.2 Rotated coordinates

Usually, the rotated coordinates are provided in the variable definition of the
files, so it is easy to project the simulations either in their rotated or non-rotated
form. All the netCDF files stored in the ENSEMBLES database contain both
the geograpahic lat/lon and the projected coordinates, so the representation
of data is quite straightforward. In the following example we will illustrate
this point using the KNMI-RACMO2 RCM data stored in the ENSEMBLES
database, from which we have an example in our working directory.

> library(ncdf)

> list.files("./files", pattern="KNMI",
+ full.names=TRUE) -> file

> file

[1] "./files/KNMI-RACMO2_CTL_ERA40_DM_50km_1991-2000_tasmax.nc"

> open.ncdf (file) -> nc.knmi
> names(nc.knmi$dim) # dimensions

[1] "bnds" "rlon" "rlat" "height" "time"
> names(nc.knmi$var) # variables

[1] "rotated_pole" "lon" "lat"
[4] "time_bnds" "tasmax"

In this step we extract the geographical coordinates:

> get.var.ncdf (nc.knmi, "lat") -> lat
> get.var.ncdf (nc.knmi, "lon") -> lon

The variables lon and lat are each one arranged in 2-dimensional matrix, be-
cause the grid is not regular, given that the native projection of the RCM is
rotated.

> dim(lat)
[1] 85 95
> str(lat)
num [1:85, 1:95] 26.9 27 27.1 27.2 27.4 ...

The spatial representation of the information contained in the file can be
easily performed in R, and the tuning options are too wide to introduce all of
them here. The packages maptools and sp provide many utilities for reading
and handling spatial objects. In the next lines we will plot the RCM grid in
geographical coordinates. We will also include the delimiting lines of world
countries for visual reference. Gridded data can also be easily represented with
the command image and contours can be overlaid using contour, for instance,
belonging to the package graphics. During the next examples we will use these
different approaches for data representation.

26

> as.vector(lon) -> vlon
as.vector(lat) -> vlat
cbind(vlon, vlat) -> coords

vV Vv

Generates Fig.9
plot(coords, asp=1, cex=.4, col="grey",

pch="+", main=("KNMI-RACMO2 lon-lat grid"))
lines(wrl)

vV + VvV V

KNMI-RACMO?2 lon-lat grid

80
|

viat

20

vion

Figure 9: Geographical coordinates of the KNMI-RACMO2 RCM

And this is the representation in rotated coordinates, as provided by the
netCDF file:

\4

get.var.ncdf (nc.knmi, "rlat") -> rlat
get.var.ncdf (nc.knmi, "rlon") -> rlon
expand.grid(rlon,rlat) -> rot.coords

vV Vv

\4

Generates Fig.10
plot(rot.coords, asp=1, cex=.4, col="grey",
pch="+", main="KNMI-RACMO2 Rotated Grid")

+ Vv

These examples are better visualized by representing the climatic variable,
in this case maximum daily air surface temperature. We now calculate the mean
max. temperature of the period encompassed by the file (1991-2000):

27

KNMI-RACMO?2 Rotated Grid

10

Var2
0
|

-20 -10 0 10 20

Varl

Figure 10: Rotated coordinates of the KNMI-RACMO2 RCM

> get.var.ncdf (nc.knmi,varid="tasmax") -> tx
> str(tx) # a 3-d array (lon,lat,time)

num [1:85, 1:95, 1:3653] 290 290 290 289 290 ...

> # applies function mean to margins 1 and 2 of the array
> apply(tx, MARGIN=c(1,2), FUN=mean) -> tx.mean
> str(tx.mean)

num [1:85, 1:95] 304 303 304 304 305 ...

list("sp.lines",wrl) -> 11

as.vector(tx.mean) -> t
cbind.data.frame(coords, t) -> t.lonlat
coordinates(t.lonlat) <- c(1,2)

library(scales)

library(RColorBrewer)
rev(brewer.pal(11,"Spectral")) -> color.palette

V V V V V V V

Generates Fig.11

spplot(t.lonlat, scales=list(draw=TRUE), sp.layout=list(11),
col.regions=alpha(color.palette,.2), cuts=10,
main="Mean Max Surface Temp 1991-2000, lon/lat projection")

+ + Vv Vv

28

Mean Max Surface Temp 1991-2000, lon/lat projection

30 vt &
. A
T T T T T
-20 0 20 40
[272.3,275.5
(275.5,278.8
5278.8,282.1
282.1,285.3
5285.3,288.6
288.6,291.8
5291.8,295.1
295.1,298.3
5298.3,301.6
301.6,304.8

Figure 11: Mean maximum temperature (1991-2000) represented using the ge-

ographical lon-lat coordinates KNMI-RACMO2 RCM

Alternatively, the same data can be easily mapped into the rotated RCM

grid, because the rotated coordinates are provided by the netCDF file, and they
have been already loaded.

> # Generates Fig.12
> image(rlon, rlat, as.matrix(tx.mean), asp=1,

+ main="Mean Max Surface Temp 1991-2000, rot. coords",
+ col=color.palette)

> contour(rlon, rlat, as.matrix(tx.mean),

+ add=TRUE, nlevels=20)

> close.ncdf (nc.knmi)

[[1]1]
(11 6

5.3 Re-projecting data

However, not in all cases the rotated coordinates are contained in the netCDF

files (although they are always in the ENSEMBLES models). In other cases, we

might be interested in combinig the climatic information with other spatially

29

Mean Max Surface Temp 1991-2000, rot. coords

rlat

rlon

Figure 12: Mean maximum temperature (1991-2000, same as Fig. 11) repre-
sented using the rotated coordinates KNMI-RACMO2 RCM

explicit information that has different projection, for instance according to the
national grids of each country. In these cases, we will need to undertake a
re-projection of the data. Following with the PROJ.4 library presented in the
Section 5.1, PROJ.4 strings are character vectors used to identify a spatial
reference system. Using the PROJ.4 syntax, it is possible to specify the complete
set of parameters that define a particular spatial reference system. In R, we can
use the packages rgdal or proj4 to obtain information about these parameters,
for instance all the projections available, the ellipsoids and the datums, etc. In
this example, we will use the rgdal package:

> library(rgdal)
> str(projInfo("proj"))

'data.frame': 129 obs. of 2 variables:

$ name : Factor w/ 129 levels "aea","aeqd",..: 1 2 ...

$ description: Factor w/ 127 levels "Airy",..: 3 6 1 2 ...
> str(projInfo("ellps"))

'data.frame': 42 obs. of 4 variables:

$ name : Factor w/ 42 levels "airy","andrae",..: 29 36 ...

$ major : Factor w/ 39 levels "a=6370997.0",..: 19 17 ...

30

$ ell : Factor w/ 25 levels "b=6355834.8467",..: 16 ...
$ description: Factor w/ 42 levels "Airy 1830",..: 29 37 ...

>str(projInfo("datum"))

'data.frame': 10 obs. of 4 variables:

$ name : Factor w/ 10 levels "carthage",..: 10 2 ...
$ ellipse : Factor w/ 8 levels "airy",..: 8 5654 2 ...
$ definition : Factor w/ 9 levels "nadgrids=Qconus,..: 4 ...

$ description: Factor w/ 10 levels "","Airy 1830",..: 1 4 9 ...

Sometimes additional parameters (and their values) are required to define
a specific projection. More generally, the PROJ.4 string will be built from a
small set of parameters common to most projections. These parameters can
be found here: http://www.remotesensing.org/geotiff/proj_list/. The
meaning and nature of these parameters is documente online at this link: http:
//trac.osgeo.org/proj/wiki/GenParms.

Because finding the correct projection specification is often a hard task,
lists still known as EPSG lists are maintained, and can be used to find the
appropriate PROJ.4 definition. EPSG referes to the now-defunct European
Petroleum Survey Group (EPSG), which developed a large geodetic parameter
dataset as distributed with PROJ.4 software. Today, the EPSG codes are still
in use, and the EPSG dataset is included in the rgdal package.

In the next example we will load the grid of the CNRM-RM4.5 RCM of
the ENSEMBLES dataset in order to illustrate the steps (and difficulties) of
re-projecting data. We will also use the EPSG codes in order to define the
appropriate PROJ.4 projections.

> list.files("./files", full.names=TRUE,
+ pattern="CNRM") -> target.file
> open.ncdf (target.file) -> nc.cnrm

> print(nc.cnrm)

[1] "file ./files/CNRM-RM4.5_CTL_ERA40_DM_50km_1991-2000_pr.nc
has 3 dimensions:"

[1] "x Size: 93"

[1] "y Size: 101"

[1] "time Size: 3653"

[1] " "

[1] "file ./files/CNRM-RM4.5_CTL_ERA40_DM_50km_1991-2000_pr.nc
has 4 variables:"

[1] "float lon[x,y] Longname:longitude Missval:1e+30"

[1] "float lat[x,y] Longname:latitude Missval:1le+30"

[1] "char Lambert_conformal[] Longname:Lambert_conformal Missval:NA"
[1] "float pr[x,y,time] Longname:Precipitation Missval:1le+30"

> names(nc.cnrm$dim) # dimensions
[1] "X" llyll ||timel|

> names(nc.cnrm$var) # variables

31

[1] "lon" "at"
[3] "Lambert_conformal" "pr"

We have information about the native grid of the RCM, Lambert Conformal,
and hopefully also about the necessary parameters to undertake data projection.

> get.var.ncdf(nc.cnrm, "lon") -> lon
> get.var.ncdf (nc.cnrm, "lat") -> lat

> cbind(as.vector(lon), as.vector(lat)) -> cnrm.coords
> # Generates Fig.13

> plot(cnrm.coords, col="grey", pch=3, cex=.3, asp=1,
+ main="CNRM-RM4.5 lon-lat grid")

> lines(wrl)

CNRM-RM4.5 lon-lat grid

Q|

s3]
—

o _|
S ®
[}

°
|4
]
]
<
E o |
c <
o
(-
N

cnrm.coords[,1]

Figure 13: Geographical Lon-Lat grid of the CNRM-RM5.1 RCM of the EN-
SEMBLES database

We go again to the projections in http://www.remotesensing.org/geotiff/
proj_list and click on the Lamber Conic Conformal. We get the following info
of the required parameters for the PROJ.4 definition:

+proj=lcc

+lat_1=Latitude of natural origin
+lon_O=Longitude of natural origin

32

+k_0=Scale factor at natural origin
+x_0=False Origin Easting
+y_0O=False Origin Northing

We next go to the projection parameters available in the netCDF file meta-
data:

> att.get.ncdf (nc.cnrm, varid="Lambert_conformal",

+ "longitude_of_central_meridian")$value
[1] "11.5"

> att.get.ncdf (nc.cnrm, varid="Lambert_conformal",
+ "latitude_of_projection_origin")$value
[1] "50.4"

> att.get.ncdf(nc.cnrm, varid="Lambert_conformal",
+ "standard_parallel")$value

[1] "11.5"

It seems that we have part of the required information (longitude of the
central meridian, the latitude of the origin and the standard parallel). How-
ever, the values of other required parameters (e.g., the ellipsoid, the datum,
the +towgs parameter...) to properly undertake the transformation remain un-
known. Note that the +towgs84 tag should be used where needed to make sure
that datum transformation does take place. Parameters for +towgs84 will be
taken from the bundled EPSG database if they are known unequivocally, but
may be entered manually from known authorities. Not providing the appropri-
ate +datum and +towgs84 tags may lead to coordinates being out by hundreds
of metres. Unfortunately, there is no easy way to provide this information: the
user has to know the correct metadata for the data being used, even if this
can be hard to discover. In this particular case, it may result useful to use as
reference the standard lambert projections used in France. To this aim, we will
use the PROJ.4 parameter definitions included in the package gdal, previously
commented. Note that our transformation in this case might be not absolutely
precise, because we have to make some assumptions, so it is advisable to have
some references. In this case, we will perform the transformation also on the
countries map (which is projected in the lon/lat WGS84 coordinate reference
system), to check the spatial consistency of the transform.

First of all we go to the EPSG lists, using the function make_EPSG to retrieve
the table with the EPSG codes, names and PROJ.4 definitions

> library(rgdal)
> make_EPSG() -> epsg
> epsglgrep("Paris.*Lambert", epsgl ,2]), 1:2]

code note
2980 27561 # NTF (Paris) / Lambert Nord France
2981 27562 # NTF (Paris) / Lambert Centre France
2982 27563 # NTF (Paris) / Lambert Sud France

33

2983 27564 # NTF (Paris) / Lambert Corse

2984 27571 # NTF (Paris) / Lambert zone I
2985 27572 # NTF (Paris) / Lambert zone II
2986 27573 # NTF (Paris) / Lambert zone III
2987 27574 # NTF (Paris) / Lambert zone IV

>epsg[2980:2987, 3]

>[1] "+proj=lcc +lat_1=49.50000000000001 +lat_0=49.50000000000001
+lon_0=0 +k_0=0.999877341 +x_0=600000 +y_0=200000
+a=6378249.2 +b=6356515 +towgs84=-168,-60,320,0,0,0,0
+pm=paris +units=m +no_defs"

[2] "+proj=lcc +lat_1=46.8 +lat_0=46.8 +lon_0=0 +k_0=0.99987742
+x_0=600000 +y_0=200000 +a=6378249.2 +b=6356515
+towgs84=-168,-60,320,0,0,0,0 +pm=paris +units=m +no_defs"

[3] "+proj=lcc +lat_1=44.10000000000001 +lat_0=44.10000000000001
+lon_0=0 +k_0=0.999877499 +x_0=600000 +y_0=200000
+a=6378249.2 +b=6356515 +towgs84=-168,-60,320,0,0,0,0
+pm=paris +units=m +no_defs"

[4]

It seems reasonable to use the metadata provided by the netCDF in combina-
tion with the other parameters required derived from these standard projections
used in France (+towgs etc.). As we can see, the parameter "k 07, refering to
the scale factor at the origin of the coordinate reference system is not equal to
1 (as one would expect from the Lambert Conformal projection definition), but
sligtly lower in all cases (~0.999877). This is a regular feature of the mapping
of some former French territories and has the effect of making the scale factor
unity on two other parallels either side of the standard parallel, an informa-
tion that we probably ignore, but that can be obtained at the list of projection
definitions at http://www.remotesensing.org/geotiff/proj_list/, that is
always advisable to check.

We specify the PROJ.4 string using the CRS (coordinate reference system)
command.

>CRS("+proj=lcc +lat_1=50.4 +lat_0=50.4 +lon_0=11.5
+k_0=0.999877 +x_0=600000 +y_0=200000
+a=6378249.2 +b=6356515
+towgs84=-168,-60,320,0,0,0,0 +pm=paris
+units=m +no_defs")-> rcm.lambert.projé

The spTransform methods in library rgdal provide transformation between
datums and conversion between projections, from one unambiguously specified
CRS to another, using PROJ.4 projection arguments. This is similar to using
the ptransform function of library proj4. We next use the CNRM model lon-lat
grid and re-project into the native Lambert Conformal Grid using this utility and
the previous PROJ.4 specification. We need to assign also a specific coordinate
reference system to the lon-lat grid (Fig. 13), in this case the WGS84 reference
system. In case of doubts, remember that we can retrieve the corresponding
PROJ .4 string from the lists included in the rgdal package via the make_EPSG
command. In addition, we need to convert the coordinates to an adequate
spatial class, in this case the SpatialPoints class of package sp for (irregularly
spaced) points.

34

> epsglgrep("WGS 84$", epsgl ,2]1), 1:2]

code note
249 4326 # WGS 84

CRS(epsgl[249, 3]) -> wgs.crs
SpatialPoints(cnrm.coords) -> rcm.lonlat.grid
proj4string(rcm.lonlat.grid) <- wgs.crs
proj4string(rcm.lonlat.grid)

vV V V V

[1] " +proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs +towgs84=0,0,0"
> rcm.lambert.proj4

CRS arguments:

+proj=lcc +lat_1=50.4 +lat_0=50.4 +lon_0=11.5
+k_0=0.999877 +x_0=600000 +y_0=200000 +a=6378249.2
+b=6356515 +towgs84=-168,-60,320,0,0,0,0 +pm=paris
+units=m +no_defs

> spTransform(rcm.lonlat.grid,
+ rcm.lambert.proj4) -> rcm.lambert.grid
> summary (rcm.lambert.grid)

Object of class SpatialPoints
Coordinates:
min max
coords.xl -1946129 2819935
coords.x2 -2362328 2779359
Is projected: TRUE
proj4string :
[+proj=lcc +lat_1=50.4 +lat_0=50.4 +lon_0=11.5
+k_0=0.999877 +x_0=600000 +y_0=200000 +a=6378249.2
+b=6356515 +towgs84=-168,-60,320,0,0,0,0 +pm=paris
+units=m +no_defs]
Number of points: 9393

> spTransform(wrl, rcm.lambert.proj4) -> world.trans

Next we plot the re-projected data in order to check the consistency of the
results:

> # Generates Fig.14

> plot(rcm.lambert.grid@coords, cex=.2, pch=3, asp=1, col="grey",
+ main="Projected RCM Grid - Lambert Conical Conformal")
> mtext (paste("Projection",epsg[2980, 2],

+ "(EPSG code",epsg[2980,1],")"),line=.3)

> lines(world.trans, col="red")

As we can see from the comparison of figures 13 and 14, both the RCM grid
and the map of the world countries have been adequately transformed. We will
now display the precipitation field. First of all we check the units

35

Projected RCM Grid — Lambert Conical Conformal
Projection # NTF (Paris) / Lambert Nord France (EPSG code 27561)

coords.x2
0e+00 1e+06 2e+06

-1e+06

—2e+06

-2e+06 -1e+06 0Oe+00 1le+06 2e+06 3e+06

coords.x1

Figure 14: Projected grid of the CNRM-RM4.5 RCM

> get.var.ncdf (nc.cnrm, varid="pr") -> precip
> str(precip)

num [1:93, 1:101, 1:3653] 7.15e-06 1.10e-06 4.65e-07 4.26e-07 2.10e-07 ...

> att.get.ncdf (nc.cnrm, varid="pr", attname="units")

$hasatt
[1] TRUE

$value
[1] "kg m-2 s-1"

As we can see, precipitation is a flux. In order to convert to mm/day, we need
to apply the corresponding correction factor, in this case to pass from seconds
to days: 60 seconds X 60 minutes x 24 hours = 86400. Then, we calculate the
average annual precipitation.

> precip*86400 -> precip.mm

In the next lines we will extract the vector of dates in order to aggregate
annualy the precipitation (as shown in Section 3). Due to the cumulative nature
of this variable, we have to proceed in two steps: first we calculate the annual
accumulated precipitation, and then we calculate the inter-annual mean of the
period:

36

> get.var.ncdf (nc.cnrm, varid="time") -> time
> att.get.ncdf (nc.cnrm, varid="time", attname="units")

$hasatt
[1] TRUE

$value
[1] "days since 1950-01-01"

> as.Date(time, origin="1950-01-01") -> dates
> library(chron)

> years(dates) -> yrs

> levels(yrs)

[1] "1991" "1992" "1993" "1994" "1995" "1996" "1997" "1998"
[9] "1999" "2000"

> array(NA, dim=c(93,101,length(levels(yrs)))) -> annual.pr

> for (i in 1:length(levels(yrs))) {

+ precip.mm[, ,which(yrs==levels(yrs)[i])] -> pr.year

+ apply(pr.year, MAR=c(1,2), FUN=sum) -> annual.pr[, ,il]
+ rm(pr.year)

+ 7

> apply(annual.pr, MAR=c(1,2), FUN=mean) -> annual.mean.pr

Now the matrix is converted to a spatial object, by binding the coordinates
and the data in a single dataframe and specifying the corresponding coordinates:

cbind.data.frame(coordinates(rcm.lambert.grid),
"Precip"=as.vector(annual.mean.pr)) -> pr.df

coordinates(pr.df) <- c(1,2)

list("sp.lines", world.trans) -> 11

colorRampPalette(c("yellow","cyan",
"blue","purple")) -> color.palette

+ V V.V + V

Generates Fig.15

spplot(pr.df, sp.layout=list(1l1l), cuts=7, cex=1.5,
col.regions=alpha(color.palette(7),.15), pch=rep(15,7),
main="Mean annual Precipitation 1991-2000 (mm/yr)")

+ + Vv Vv

> # Close netCDF connection
> close.ncdf (nc.cnrm)

[[1]1]
(11 6

6 VALUE-THREDDS data access

6.1 Introduction to THREDDS

The THREDDS Data Server (Thematic Realtime Environmental Distributed
Data Services) is a web server that provides metadata and data access for scien-
tific datasets, using OPeNDAP, OGC WMS and WCS, HTTP, and other remote

37

Mean annual Precipitation 1991-2000 (mm/yr)

-1

v

Eg .801,508.2]
508.2 1007]
51007 11505
1505,2003
52003,2502
2502,3000
(3000,3498]

Figure 15: Representation of the mean annual precipitation (1991-2000) us-
ing the re-projected lon-lat grid of the CNRM-RM4.5 RCM onto the Lambert
Conical Conformal projection

data access protocols. The mission of THREDDS is for students, educators and
researchers to publish, contribute, find, and interact with data relating to the
Earth system in a convenient, effective, and integrated fashion. In the context
of the Cost Action VALUE, UC has established the VALUE-THREDDS service
for data access. In this section we will illustrate some of the capabilities of the
VALUE-THREDDS data server and will download some example files using R
in order to perform some basic operations of data representation and analysis,
building upon the experienced gained from the previous examples.

The link to the VALUE-THREDDS is: http://www.meteo.unican.es/
thredds/catalog/VALUE/. There is also a User Manual of this server avail-
able to VALUE partners.

6.2 THREDDS data download

The download.file function of the R package utils (by default included in the
basic R install), is a useful tool for downloading files from the internet. The first
thing we need to know is the exact internet link to the file. This is explained in
more detail in the VALUE-THREDDS User Manual, so we won’t extend much
on this issue.

1. The whole file can be directly downloaded into the local machine. This is

38

-
THREDDS4.2

THREDDS Data Server

e Data size: 231.6 Mbytes
* ID: VALUE/Observations/Spain02_v2.1/Spain02D_v2.1_tasmax.nc

Access:

. OPENDAP: /thredds/dodsC/VALUE/Observations/Spain02_v2.1/Spain02D_v2.1_tasmax.nc
HTTPServer: /thredds/fileServer/VALUE/Observations/Spain02_v2.1/Spain02D_v2.1_tasmax.nc
. WCS: /thredds/wcs/VALUE/Observations/Spain02_v2.1/Spain02D_v2.1_tasmax.nc

WMS: /thredds/wms/VALUE/Observations/Spain02_v2.1/Spain02D_v2.1_tasmax.nc

. NetcdfSubset: /thredds/ncss/grid/VALUE/Observations/Spain02_v2.1/Spain02D_v2.1_tasmax.nc
. QueryCapability: /thredds/dqc/VALUE/Observations/Spain02_v2.1/Spain02D_v2.1_tasmax.nc

OOA NS

Dates:
e 2010-12-09 11:22:48Z (modified)
Viewers:

* NetCDF-Java ToolsUI| (webstart)
* Godiva2 (browser-based)

Figure 16: The data access window of the VALUE-THREDDS data server.

possible using the links (1) and (2) of the Access section of the data access
window, which correspond to OpenDAP and HTTP protocols respectively
(Fig. 16).

2. Links (3) and (4) give access to map coverages via Map Servers, that allow
for unfiltered access to raster data.

3. Links (5) and (6) allow for querying and sub-setting the data, instead of
downloading the whole file. This is illustrated in the example below.

4. In addition, files can be interactively viewed using either ToolsUI or Go-
diva2).

In this practice, we will concentrate of the netCDF Subset Service (Link 5
on Figure 16), wich allows downloading subsets of netCDF files, for instance
by selecting areas of interest or certain time periods instead of the whole files,
which are often large and slow to download.

6.2.1 netCDF subsetting

In the next example we will select a sub-domain of the EOBS gridded dataset
centered on the Iberian Peninsula for the period 1970-2000 (same period as
before). In this case, a number of specifications detailing the bounding box
and time span of the subset must be specified in the character string used to
define the URL path. The bounding box has west as its west edge, includes
all points going east until the east edge. Units must be degrees east, may be

39

positive or negative, and will be taken modulo 360. Therefore, when crossing
the dateline, the west edge may be greater than the east edge. If the grid is
on a projection, the 4 corners of the lat/lon bounding box are converted into
projection coordinates, then the smallest rectangle including those 4 points is
used. Regarding the time interval definition, the requested time point must lie
within the dataset time range. The time slice closest to the requested time will
be returned. For example, a bounding box centered on the Iberian Peninsula
would be defined as follows:

> bbox = "&north=44&south=36&east=5&west=-10"

Similarly, in order to define specific time ranges, both start and end times
must be adequately specified as W3C strings 6. For instance, if we want to
select the period 1991-2000, this must be specified as follows:

> time.start = "time_start=1991-01-01T00:00:00Z"
> time.end = "time_end=2000-12-31T00:00:00Z"

Further details of net CDF subsetting can be found at http://www.unidata.
ucar.edu/projects/THREDDS/tech/interfaceSpec/GridDataSubsetService.
html

> url = "http://www.meteo.unican.es/thredds/ncss/grid/VALUE/
+ Observations/E-0BS_v7/Grid_050deg_reg/tx_0.50deg_reg_v7.0.nc"

and this is the complete route to the NCSS file, including the var specifica-
tion, which is always required:

> paste(url,"?var=tx",bbox,"&",time.start,"&",time.end, sep="") -> f

> f

[1] "http://www.meteo.unican.es/thredds/ncss/grid/VALUE
/0bservations/E-0BS_v7/Grid_050deg_reg/tx_0.50deg_reg_v7.0.nc
?var=tx&north=44&south=36&east=5&west=-10&
time_start=1991-01-01T00:00:00Z&
time_end=2000-12-31T00:00:00Z"

> download.file(f, destfile="C:/VALUE/files/TX_EOBS_0.50deg_IP.nc",
+ mode="wb")

probando la URL 'http://www.meteo.unican.es/thredds/ncss/grid
/VALUE/Observations/E-0BS_v7/Grid_050deg_reg/tx_0.50deg_reg_v7
.0.nc?var=tx&north=44&south=36&east=5&west=-10&time_start=1991
-01-01T00:00:00Z&time_end=2000-12-31T00:00:00Z'

Content type 'application/x-netcdf' length 7716652 bytes (7.4 Mb)
URL abierta

downloaded 7.4 Mb

When the download finishes, the EOBS file is stored in our machine ready
to be used.

Shttp://wuw.unidata.ucar.edu/projects/THREDDS/tech/interfaceSpec/
NetcdfSubsetService.html#W3Cdate

40

7 A practical example

In the following example we will compare the performance of two ENSEMBLES
RCMs run on the control scenario (i.e. coupled to ERA-40), using as reference
the EOBS data, previously downloaded netCDF subset (Section 6.2.1). This
example will focus on maximum 2 m temperature, and for the sake of simplicity
we use just the 10-year period 1991-2000 and the 0.5 degree resolution scenarios,
although the steps presented here can be applied to any other dataset.

We first read the file downloaded via THREDDS in the previous section, and
check that the time range and the bounding box correspond to the parameters
defined in the subset query:

> open.ncdf ("C:/VALUE/files/TX_EOBS_0.50deg_IP.nc") -> nc.eobs
> print(nc.eobs)

[1] "file C:/VALUE/files/TX_EOBS_0.50deg_IP.nc has 3 dimensions:"

[1] "time Size: 3653"

[1] "latitude Size: 17"

[1] "longitude Size: 31"

[1] n__ n

[1] "file C:/VALUE/files/TX_EOBS_0.50deg_IP.nc has 1 variables:"

[1] "float tx[longitude,latitude,time] Longname:maximum temperature Missval:1e+30"

> get.var.ncdf (nc.eobs, varid="time") -> ti.eobs
> range(ti.eobs)

[1] 14975 18627

> names(nc.eobs$dim)

[1] "time" "latitude" "longitude"
> nc.eobsdimtime$units

[1] "days since 1950-01-01 00:00"

> as.Date(ti.eobs, origin="1950-01-01") -> dates.eobs
> range(dates.eobs)

[1] "1991-01-01" "2000-12-31"

> get.var.ncdf (nc.eobs, varid="longitude") -> lon.eobs
> get.var.ncdf (nc.eobs, varid="latitude") -> lat.eobs
> range(lon.eobs)

[1] -9.75 5.25
> range(lat.eobs)
[1] 36.25 44.25

We next proceed to reading the RCM files, previously applied to other ex-
amples: the KNMI-RACMO2 and the SMHI-RCA models:

41

> open.ncdf ("./files/KNMI-RACMO2_CTL_ERA40_DM_50km_1991-2000_tasmax.nc") -> nc.knmi
> print(nc.knmi)

[1] "file ./files/KNMI-RACMO2_CTL_ERA40_DM_50km_1991-2000_tasmax.nc has 5 dimensions:"
[1] "bnds Size: 2"

[1] "rlon Size: 85"

[1] "rlat Size: 95"

[1] "height Size: 1"

[1] "time Size: 3653"

[1] " "

[1] "file ./files/KNMI-RACMO2_CTL_ERA40_DM_50km_1991-2000_tasmax.nc has 5 variables:"
[1] "char rotated_pole[] Longname:rotated_pole Missval:NA"

[1] "float lon[rlon,rlat] Longname:longitude Missval:1le+30"

[1] "float lat[rlon,rlat] Longname:latitude Missval:1le+30"

[1] "double time_bnds[bnds,time] Longname:time bounds Missval:1le+30"

[1] "float tasmax[rlon,rlat,height,time] Longname:Daily maximum 2-m temperature Missval

> open.ncdf ("./files/SMHIRCA_CTR_ERA40_DM_50km_1991-2000_tasmax.nc") -> nc.smhi
> print(nc.smhi)

[1] "file ./files/SMHIRCA_CTR_ERA40_DM_50km_1991-2000_tasmax.nc has 5 dimensions:"
[1] "bnds Size: 2"

[1] "rlon Size: 85"

[1] "rlat Size: 95"

[1] "height Size: 1"

[1] "time Size: 3653"

[1] " "

[1] "file ./files/SMHIRCA_CTR_ERA40_DM_50km_1991-2000_tasmax.nc has 5 variables:"
[1] "char rotated_pole[] Longname:rotated_pole Missval:NA"

[1] "float lon[rlon,rlat] Longname:longitude Missval:1le+30"

[1] "float lat[rlon,rlat] Longname:latitude Missval:1le+30"

[1] "double time_bnds[bnds,time] Longname:time bounds Missval:1le+30"

[1] "float tasmax[rlon,rlat,height,time] Longname:Daily maximum 2-m temperature Missval

In principle, the time range encompassed by these two RCM files matches
the time range of the EOBS dataset, but we will check it:

> get.var.ncdf (nc.knmi, varid="time") -> ti.knmi
> get.var.ncdf (nc.smhi, varid="time") -> ti.smhi
> identical(ti.smhi, ti.knmi)

(1] TRUE
> jidentical(ti.eobs, ti.knmi)
[1] FALSE

The numeric time vectors are not identical, because time is defined at 00:00Z
in the EOBS files, but at 12:00Z in the RCM files. However, the days are the
same:

> as.Date(ti.knmi, origin="1950-01-01") -> dates.knmi
> as.Date(ti.smhi, origin="1950-01-01") -> dates.smhi
> range(dates.eobs)

42

[1] "1991-01-01" "2000-12-31"
> range(dates.smhi)
[1] "1991-01-01" "2000-12-31"
> range(dates.knmi)
[1] "1991-01-01" "2000-12-31"

So now we are sure the time period encompassed by the files is the same. Now
we should have all datasets interpolated to the same grid for perfect comparison.

get.var.ncdf (nc.knmi, varid="lon") -> lon.knmi

get.var.ncdf (nc.knmi, varid="lat") -> lat.knmi

get.var.ncdf (nc.smhi, varid="lon") -> lon.smhi

get.var.ncdf (nc.smhi, varid="lat") -> lat.smhi
cbind(as.vector(lon.knmi), as.vector(lat.knmi)) -> grid.knmi
cbind(as.vector(lon.smhi), as.vector(lat.smhi)) -> grid.smhi
expand.grid(lon.eobs, lat.eobs) -> grid.eobs

V V V V V V VvV

Generates Fig.17

plot(grid.knmi, pch=3, cex=.2, col="grey", asp=1)

points(grid.smhi, pch=3, cex=.2, col="blue")

points(grid.eobs, col="red")

lines(wrl)

legend ("bottomright", c("KNMI-RACM02","SMHI-RCA","EOBS_0.5"),
pch=3, col=c("grey","blue","red"), bg="white")

+ V V. V V VvV VvV

It seems that SMHI-RCA and KNMI-RACMO?2 share the same grid. Next
we will apply the interp.nn function (see Section 4.3) in order to interpolate
mean maximum temperatures of the RCMs onto the EOBS 0.5 degree regular
grid centered on the Iberian Peninsula. To this aim, first the mean temperature
values are calculated.

> names(nc.knmi$var)

[1] "rotated_pole" "lon" "lat"
[4] "time_bnds" "tasmax"

> names(nc.smhi$var)

[1] "rotated_pole" "lon" "lat"
[4] "time_bnds" "tasmax"

> names(nc.eobs$var)
[1] nex!

get.var.ncdf (nc.knmi, varid="tasmax") -> tx.knmi
get.var.ncdf (nc.smhi, varid="tasmax") -> tx.smhi
get.var.ncdf (nc.eobs, varid="tx") -> tx.eobs
apply(tx.knmi, MAR=c(1,2), FUN=mean) -> tx.mean.knmi
apply(tx.smhi, MAR=c(1,2), FUN=mean) -> tx.mean.smhi
apply(tx.eobs, MAR=c(1,2), FUN=mean) -> tx.mean.eobs
close.ncdf (nc.knmi)

V V V V V V VvV

43

80
|

B 5 s s et
755 SR

grid.knmi[,2]
60
|

40

KNMI-RACMO2
+ SMHI-RCA
+ EOBS_0.5

T T
40 60

grid.knmi[,1]

Figure 17: The RCMs grid in geographical coordinates and the regular 0.5
degree EOBS grid centered on the Iberian Peninsula

[[1]1]
(11 10

> close.ncdf (nc.smhi)

[[1]1]
[1]1 11

> close.ncdf (nc.eobs)

[[1]1]
(11 6

And next the mean maximum temperature fields are interpolated:

> interp.nn(input.grid=grid.knmi,

+ output.grid=grid.eobs, z=as.vector(tx.mean.knmi)
+ , verbose=FALSE) -> tx.knmi.interp

> interp.nn(input.grid=grid.smhi,

+ output.grid=grid.eobs, z=as.vector(tx.mean.smhi)
+ , verbose=FALSE) -> tx.smhi.interp

Now we prepare the data in a data.frame, with the first two columns corre-
sponding to the coordinates of the EOBS grid and the remaining three columns

44

with the data from EOBS and the two RCMs. In addition, we make the conver-
sion of the RCM temperatures in order to have them in degrees Celsius instead
of Kelvin to match the EOBS data.

> cbind.data.frame(grid.eobs,

+ "TX_EOBS"=as.vector(tx.mean.eobs),
+ "TX_KNMI"=tx.knmi.interp$z-273.15,
+ "TX_SMHI"=tx.smhi.interp$z-273.15) -> df

Once the data.frame is created, we create an object of the class Spatial
by indicating the coordinates.

> coordinates(df) <- c(1,2)

> gridded(df) <- TRUE

> list("sp.lines", wrl) -> 11

> colorRampPalette(rev(brewer.pal(9,
+ "Spectral"))) -> color.pal
> # Generates Fig.18

\4

spplot(df, sp.layout=1list(1l1l), scales=list(draw=TRUE),
+ col.regions=color.pal(21), main="Tasmax 1991-2000, CTL scenario")

As we can see, EOBS is restricted to land observations. In order to have
full comparability and same number of observations, we can clip the RCMs data
easily by retaining only the data points which are not missing data in the EOBS
dataset:

> which(is.na(as.vector(tx.mean.eobs))) -> missvals
> str(missvals)

int [1:216] 1 23456 7 8 10 11 ...

> cbind.data.frame(grid.eobs[-missvals,],

+ "TX_EOBS"=as.vector(tx.mean.eobs) [-missvals],

+ "TX_KNMI"=(tx.knmi.interp$z-273.15) [-missvals],

+ "TX_SMHI"=(tx.smhi.interp$z-273.15) [-missvals]) -> landmask
> coordinates(landmask) <- c(1,2)

> gridded(landmask) <- TRUE

\4

Generates Fig.19
spplot(landmask, sp.layout=1list(11), scales=list(draw=TRUE),
col.regions=color.pal(21), main="Tasmax 1991-2000, CTL scenario")

+ Vv

7.1 Analyzing model results
7.1.1 Taylor diagram

Karl Taylor” has devised a very useful diagrammatic form (termed “Taylor dia-
gram”) for conveying information about the pattern similarity between a model

"Taylor, K.E. 2001. Summarizing multiple aspects of model performance in single diagram,
J. Geophys. Res., 106, D7, 7183-7192, 2001.

45

Tasmax 1991-2000, CTL scenario

1 1
TX_SMHI l
7 44 24

- 42

~ 40
~ 38

TX_EOBS TX_KNMI

44
42 4
40 —+

38 +

Figure 18: Mean maximum temperature (1990-1991) as simulated by the KNMI-
RACMO2 and SMHI-RCA RCMs coupled to ERA-40, and as observed by the
EOBS dataset.

and observations (see example below). This same type of diagram can be used
to illustrate the relative accuracy amongst a number of model variables or dif-
ferent observational data sets. One additional advantage of the Taylor diagram
is that there is no restriction placed on the time or space domain considered?®.

The R package plotrix has a function to create Taylor diagrams. Fur-
ther customization can be done by modifying the code of the function, but
for illustrative purposes the original function taylor.diagram will suffice. In
the following example, we compare the performance of KNMI-RACMO2 and
SMHI-RCA RCMs using as reference the EOBS dataset, previously displayed
in Fig. 19:

> library(plotrix)

> # Generates Fig.20

> taylor.diagram(ref=as.vector(tx.mean.eobs) [-missvals],

+ model=(tx.knmi.interp$z-273.15) [-missvals], normalize=TRUE)
> taylor.diagram(ref=as.vector(tx.mean.eobs) [-missvals],

+ model=(tx.smhi.interp$z-273.15) [-missvals], add=TRUE,

8http://www.ipsl.jussieu.fr/~ jmesce/Taylor_diagram/taylor_diagram_definition.
html#reference

46

Tasmax 1991-2000, CTL scenario

~ 44 l24

- 42

I I
TX_SMHI

— 40

- 38

TX_EOBS TX_KNMI

44
42

40 —+

38

Figure 19: Same as Fig. 18, but applying a landmask to keep the same number
of observations for all datasets

+ normalize=TRUE, col="blue")
> legend("topright", c("KNMI","SMHI"), pch=19, col=c(2,4))

7.1.2 Correlation

In this example we will compute cross-correlations between the daily temper-
ature values of the previous RCMs. We will represent the data in the EOBS
regular grid of degree resolution. The function cor computes the Pearson’s
correlation coefficient by default, although Kendall and Spearman are also im-
plemented. More information on the correlation test can be obtained via the
cor.test function, which also provides p-values and other statistics. First of
all, we interpolate the geographical grid of the RCMs onto the regular EOBS
grid using the nearest neighbor function interp.nn presented in Section 4.3

> open.ncdf ("./files/elev_0.50deg_reg_v4.0.nc") -> nc.eobs.eu
> get.var.ncdf (nc.eobs.eu, varid="longitude") -> lon.eobs.eu
> get.var.ncdf(nc.eobs.eu, varid="latitude") -> lat.eobs.eu
> close.ncdf (nc.eobs.eu)

[[111
(1] 6

47

Taylor Diagram

o 01 g5
24 0.3
0.4 o KNMI
1.5
c 9 |
S
k&
>
Q
o
o
©
=)
8
= n
" S

Figure 20: A Taylor diagram displaying the similarity of SMHI-RCA and KNMI-
RACMO2 control runs against the EOBS observational dataset, all at 0.5 degree
resolution for the period 1991-2000. Variable analysed is mean maximum surface
temperature

> expand.grid(lon.eobs.eu, lat.eobs.eu) -> grid.eobs.eu
> interp.nn(input.grid=grid.knmi,
+ output.grid=grid.eobs.eu, verbose=FALSE) -> grid05.rcm

In the next step the cross-correlation is computed:
> dim(tx.smhi)

[1] 85 95 3653

> c() -> cor.vals

> matrix(rep(NA,85%95), ncol=2) -> coords

> colnames(coords) <- c("x","y")

> for (j in 1:95) {

+ for (i in 1:85) {

+ cor(tx.smhili,j,], tx.knmili,j,]) -> a
+ c(cor.vals,a) -> cor.vals

+ }

+ }

And finally the results are mapped, creating a data.frame that is afterwards
converted to a SpatialPixelsDataFrame object by indicating the coordinates:

48

cbind.data.frame(grid05.rcm$Grid,
"Cor"=cor.vals[grid05.rcm$Index]) -> df.cor

coordinates(df.cor) <- c(1,2)

gridded(df.cor) <- TRUE

colorRampPalette (brewer.pal(9,"Oranges") [1:8]) -> color.pal

list("sp.lines", wrl) -> 11

vV V.V V + V

\2

Generates Fig.21
spplot (df.cor, zcol="Cor", col.regions=color.pal(21),
sp.layout=list(11), scales=list(draw=TRUE))

+ Vv

1.00

0.98

0.96

0.94

0.92

0.90

Figure 21: Cross-correlation (Pearson correlation coefficient) of air surface daily
maximum temperature between KNMI-RACMO?2 and SMHI-RCA RCMs cou-
pled to ERA-40 (1991-2000)

8 Summary of R packages used
akima Interpolation of irregularly spaced data
chron Chronological objects which can handle dates and times

maptools Tools for reading and handling spatial objects. Includes the world
map dataset used in the figures of this manual.

49

ncdf The R interface to the Unidata netCDF data files. It only supports
netCDF until version 3. For a newer version see the next library ncdf4.

ncdf4 This package provides a high-level R interface to data files written using
Unidata’s netCDF library (version 4 or earlier), which are binary data
files that are portable across platforms and include metadata information
in addition to the data sets. Using this package, netCDF files (either
version 4 or "classic” version 3) can be opened and data sets read in easily.
It is also easy to create new netCDF dimensions,variables, and files, in
either version 3 or 4 format, and manipulate existing netCDF files. This
package replaces the former ncdf package, which only worked with netedf
version 3 files. For various reasons the names of the functions have had
to be changed from the names in the ncdf package. The old ncdf package
is still available at the URL given below, if you need to have backward
compatibility. It should be possible to have both the ncdf and ncdfd
packages installed simultaneously without a problem. However, the ncdf
package does not provide an interface for netcdf version 4 files.

plotrix Lots of plots, various labeling, axis and color scaling functions.

proj4 A simple interface to lat/long projection and datum transformation of
the PROJ.4 cartographic projections library. It allows transformation of
geographic coordinates from one projection and/or datum to another.

RColorBrewer Provides palettes for drawing nice maps shaded according to a
variable

rgdal Provides bindings to Frank Warmerdam’s Geospatial Data Abstraction
Library (GDAL) and access to projection/transformation operations from
the PROJ .4 library. The GDAL and PROJ.4 libraries are external to the
package, and, when installing the package from source, must be correctly
installed first. Both GDAL raster and OGR vector map data can be
imported into R, and GDAL raster data and OGR. vector data exported.
Use is made of classes defined in the sp package.

rgeos Interface to Geometry Engine - Open Source (GEOS) using the C API for
topology operations on geometries. The GEOS library is external to the
package, and, when installing the package from source, must be correctly
installed first. Windows and Mac Intel OS X binaries are provided on
CRAN.

scales Scales map data to aesthetics, and provide methods for automatically
determining breaks and labels for axes and legends. Used in our examples
to add an alpha channel (transparency) to the color legends.

sp Classes and methods for spatial data

50

