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The Intergovernmental Panel on Climate Change (IPCC) was 
established in 1988 by the United Nations Environment Programme 
(UNEP) and the WMO to provide the world with a clear scientific view 
on the current state of knowledge in climate change: 

WG1. The Physical Science Basis. 
WG2. Impacts, Adaptation and Vulnerability.  
WG3. Mitigation of Climate Change. 

IPCC have published four assessment reports (http://www.ipcc.ch), 
the last one (AR4) in 2007 (the next one, AR5, will be ready in 2013).  

Climate Change: 
IPCC (AR4) 
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Warming of the climate system is 
unequivocal, as is now evident 
from observations of increases in 
global average air and ocean 
temperatures, widespread melting 
of snow and ice and rising global 
average sea level.    (AR4-IPCC, 2007) 

Evidences: 
Observation 

berkeleyearth.org 
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Atmosphere + Hydrosphere + Cryosphere + Lithosphere + Biosphere 

The Climatic 
Sytem 

+ Forcings 
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Half the solar radiation is absorbed by the Earth’s surface and is latter emitted 
as infrared radiation which passes through the atmosphere, but most is 
absorbed back by greenhouse gases (CO2, CH4, etc.), with a warming effect. 

Greenhouse 
Gases 
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The variations of the Earth’s orbit around the 
Sun determines the climate variations at a 
geological timescale (alternation between 
glaciation and interglacial periods). 

CO2 levels varied between 180 and 300 
parts per milion during the 400,000 years. 

Variability of  CO2 

concentration 

John Tyndall discovered that 
greenhouse gases block infrared 
radiation. Arrhenius estimated that 
doubling the CO2 concentration, the 
temperature will increase 5°C. 

Antrophogenic/Global 
 climate change 
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The synoptic dymamics (global scale) of the 
atmosphere is governed by well-known physic laws. 

Conservación de energía, masa,  
momento, vapor de agua, 
ecuación de estado de gases.  

v = (u, v, w), T, p, ρ = 1/α y q 

Numerical 
modeling:  

The Atmosphere 
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Towards: 
Earth-System 

Models 
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Ecuaciones de conservación y estado 

Numerical 
modeling… 

Historical period 

v = (u, v, w), T, p, ρ = 1/α y q 

According to WMO, the 
climatology is defined by 
a 30 years period, 
suitable to estimate 
statistics such as the 
mean, var, trend, etc.  
 

In some cases, 20 years 
or a decade are also 
considered. 

1980 

Historical simulations  
(control scenario, 20C3M) 2000 1990 

Different initial conditions allow testing 
the internal variability of the model. 
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Global Climate 
Models, GCMs 

(CCM3) 
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www-pcmdi.llnl.gov/ipcc/about-ipcc.php  

Validation: 
Temperature 
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www-pcmdi.llnl.gov/ipcc/about-ipcc.php  

Validation: 
Precipitation 
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Anomalías de la 
temperatura superficial 
media global, relativas 
al promedio de 
1880-1920, de los 
registros 
instrumentales, 
comparadas con 
conjuntos de cuatro 
simulaciones 
realizadas con un 
modelo acoplado 
océano-atmósfera . 

(a) forzamientos solar y 
volcánico solamente;  
(b) antropogénicos, 
incluyendo gases 
invernadero, ozono 
estratosférico y 
troposférico, y efectos 
indirectos de aerosoles 
sulfato; y  
(c) todos los forzamientos, 
tanto naturales como 
antropogénicos.  

PROBLEMS: 
Attribution 
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2010 2020 2030 2040 2050 2060 2070 2080 2090 

Future ???  
Need for scenarios 

2000 1990 1980 

Control 
Scenario (e.g. 20C3M scenario) 

Ecuaciones de conservación y estado 

v = (u, v, w), T, p, ρ = 1/α y q 

Numerical 
modeling… 

Future Projections 
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Forcings: SRES 
Emission Scenarios 

http://www.ipcc.ch/pdf/special-reports/spm/sres-en.pdf 

Emissions Scenarios4

The main characteristics of the four SRES storylines and scenario families

By 2100 the world will have changed in ways that are difficult to imagine – as difficult as it would have been at the end of the
19th century to imagine the changes of the 100 years since. Each storyline assumes a distinctly different direction for future
developments, such that the four storylines differ in increasingly irreversible ways. Together they describe divergent futures that
encompass a significant portion of the underlying uncertainties in the main driving forces. They cover a wide range of key
“future” characteristics such as demographic change, economic development, and technological change. For this reason, their
plausibility or feasibility should not be considered solely on the basis of an extrapolation of current economic, technological,
and social trends.
• The A1 storyline and scenario family describes a future world of very rapid economic growth, global population that

peaks in mid-century and declines thereafter, and the rapid introduction of new and more efficient technologies. Major
underlying themes are convergence among regions, capacity building, and increased cultural and social interactions, with
a substantial reduction in regional differences in per capita income. The A1 scenario family develops into three groups
that describe alternative directions of technological change in the energy system. The three A1 groups are distinguished
by their technological emphasis: fossil intensive (A1FI), non-fossil energy sources (A1T), or a balance across all sources
(A1B).3

Figure 1: Schematic illustration of SRES scenarios. Four qualitative storylines yield four sets of scenarios called “families”:
A1, A2, B1, and B2. Altogether 40 SRES scenarios have been developed by six modeling teams. All are equally valid with
no assigned probabilities of occurrence. The set of scenarios consists of six scenario groups drawn from the four families:
one group each in A2, B1, B2, and three groups within the A1 family, characterizing alternative developments of energy
technologies: A1FI (fossil fuel intensive), A1B (balanced), and A1T (predominantly non-fossil fuel). Within each family and
group of scenarios, some share “harmonized” assumptions on global population, gross world product, and final energy.
These are marked as “HS” for harmonized scenarios. “OS” denotes scenarios that explore uncertainties in driving forces
beyond those of the harmonized scenarios. The number of scenarios developed within each category is shown. For each of
the six scenario groups an illustrative scenario (which is always harmonized) is provided. Four illustrative marker scenarios,
one for each scenario family, were used in draft form in the 1998 SRES open process and are included in revised form in
this Report. Two additional illustrative scenarios for the groups A1FI and A1T are also provided and complete a set of six
that illustrates all scenario groups. All are equally sound.

3 Balanced is defined as not relying too heavily on one particular energy source, on the assumption that similar improvement rates apply
to all energy supply and end use technologies.

Summary for Policymakers

IPCC SPECIAL REPORT
 EMISSIONS SCENARIOS
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Special Report on Emissions Scenarios (SRES) 
scenarios (2000) are based on global population,  
gross world product and final energy. 

Working Group I Contribution to the IPCC Fifth Assessment Report Scenario development process
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Family A1 A2 B1 B2

Scenario group 1990 A1FI A1B A1T A2 B1 B2

Population (billion) 5.3
2020 7.6 (7.4-7.6) 7.4 (7.4-7.6) 7.6 (7.4-7.6) 8.2 7.6 (7.4-7.6) 7.6
2050 8.7 8.7 8.7 11.3 8.7 (8.6-8.7) 9.3
2100 7.1 (7.0-7.1) 7.1 (7.0-7.1) 7.0 15.1 7.0 (6.9-7.1) 10.4

World GDP (1012 1990US$/yr) 21
2020 53 (53-57) 56 (52-61) 57 (56-57) 41 53 (51-57) 51 (48-51)
2050 164 (164-187) 181 (164-181) 187 (182-187) 82 136 (134-166) 110 (108-111)
2100 525 (525-550) 529 (529-536) 550 (529-550) 243 328 (328-350) 235 (232-237)

Per capita income ratio: 16.1
developed countries and 
economies in transition 
(Annex-I) to developing 
countries (Non-Annex-I)

2020 7.5 (6.2-7.5) 6.4 (5.2-7.5) 6.2 (6.2-6.4) 9.4 (9.4-9.5) 8.4 (5.3-8.4) 7.7 (7.5-8.0)
2050 2.8 2.8 (2.4-2.8) 2.8 6.6 3.6 (2.7-3.9) 4.0 (3.8-4.6)
2100 1.5 (1.5-1.6) 1.6 (1.5-1.7) 1.6 4.2 1.8 (1.6-1.9) 3.0 (3.0-3.5)

a For some driving forces, no range is indicated because all scenario runs have adopted exactly the same assumptions.

Table 1b: Overview of main primary driving forces in 1990, 2020, 2050, and 2100. Bold numbers show the value for the illustrative scenario and the numbers between
brackets show the value for the rangea across 26 harmonized SRES scenarios in the six scenario groups that constitute the four families. Units are given in the table.
Technological change is not quantified in the table.

SRES Emission 
Scenarios 
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Family A1 A2 B1 B2

Scenario group 1990 A1FI A1B A1T A2 B1 B2

Final energy intensity (106J/US$)a 16.7
2020 9.4 (8.5-9.4) 9.4 (8.1-12.0) 8.7 (7.6-8.7) 12.1 (9.3-12.4) 8.8 (6.7-11.6) 8.5 (8.5-11.8)
2050 6.3 (5.4-6.3) 5.5 (4.4-7.2) 4.8 (4.2-4.8) 9.5 (7.0-9.5) 4.5 (3.5-6.0) 6.0 (6.0-8.1)
2100 3.0 (2.6-3.2) 3.3 (1.6-3.3) 2.3 (1.8-2.3) 5.9 (4.4-7.3) 1.4 (1.4-2.7) 4.0 (3.7-4.6)

Primary energy (1018J/yr)a 351
2020 669 711 649 595 606 566

(653-752) (573-875) (515-649) (485-677) (438-774) (506-633)
2050 1431 1347 1213 971 813 869

(1377-1601) (968-1611) (913-1213) (679-1059) (642-1090) (679-966)
2100 2073 2226 2021 1717 514 1357

(1988-2737) (1002-2683) (1255-2021) (1304-2040) (514-1157) (846-1625)

Share of coal in primary energy (%)a 24
2020 29 (24-42) 23 (8-28) 23 (8-23) 22 (18-34) 22 (8-27) 17 (14-31)
2050 33 (13-56) 14 (3-42) 10 (2-13) 30 (24-47) 21 (2-37) 10 (10-49)
2100 29 (3-48) 4 (4-41) 1 (1-3) 53 (17-53) 8 (0-22) 22 (12-53)

Share of zero carbon in 18
primary energy (%)a

2020 15 (10-20) 16 (9-26) 21 (15-22) 8 (8-16) 21 (7-22) 18 (7-18)
2050 19 (16-31) 36 (21-40) 43 (39-43) 18 (14-29) 30 (18-40) 30 (15-30)
2100 31 (30-47) 65 (27-75) 85 (64-85) 28 (26-37) 52 (33-70) 49 (22-49)

a 1990 values include non-commercial energy consistent with IPCC WGII SAR (Energy Primer) but with SRES accounting conventions.  Note that ASF, MiniCAM, and IMAGE scenarios
do not consider non-commercial renewable energy. Hence, these scenarios report lower energy use.

Table 2a: Overview of main secondary scenario driving forces in 1990, 2020, 2050, and 2100. Bold numbers show the value for the illustrative scenario and the numbers
between brackets show the value for the range across all 40 SRES scenarios in the six scenario groups that constitute the four families. Units are given in the table.
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Family A1 A2 B1 B2

Scenario group 1990 A1FI A1B A1T A2 B1 B2

Carbon dioxide, fossil fuels (GtC/yr) 6.0
2020 11.2 (10.7-14.3) 12.1 (8.7-14.7) 10.0 (8.4-10.0) 11.0 (7.9-11.3) 10.0 (7.8-13.2) 9.0 (8.5-11.5)
2050 23.1 (20.6-26.8) 16.0 (12.7-25.7) 12.3 (10.8-12.3) 16.5 (10.5-18.2) 11.7 (8.5-17.5) 11.2 (11.2-16.4)
2100 30.3 (27.7-36.8) 13.1 (12.9-18.4) 4.3 (4.3-9.1) 28.9 (17.6-33.4) 5.2 (3.3-13.2) 13.8 (9.3-23.1)

Carbon dioxide, land use (GtC/yr) 1.1
2020 1.5 (0.3-1.8) 0.5 (0.3-1.6) 0.3 (0.3-1.7) 1.2 (0.1-3.0) 0.6 (0.0-1.3) 0.0 (0.0-1.9)
2050 0.8 (0.0-0.9) 0.4 (0.0-1.0) 0.0 (-0.2-0.5) 0.9 (0.6-0.9) -0.4 (-0.7-0.8) -0.2 (-0.2-1.2)
2100 -2.1 (-2.1-0.0) 0.4 (-2.4-2.2) 0.0 (0.0-0.1) 0.2 (-0.1-2.0) -1.0 (-2.8-0.1) -0.5 (-1.7-1.5)

Cumulative carbon dioxide,
fossil fuels (GtC)

1990-2100 2128 1437 1038 1773 989 1160
(2079-2478) (1220-1989) (989-1051) (1303-1860) (794-1306) (1033-1627)

Cumulative carbon dioxide,
land use (GtC)

1990-2100 61 (31-69) 62 (31-84) 31 (31-62) 89 (49-181) -6 (-22-84) 4 (4-153)

Cumulative carbon dioxide,
total (GtC)

1990-2100 2189 1499 1068 1862 983 1164
(2127-2538) (1301-2073) (1049-1113) (1352-1938) (772-1390) (1164-1686)

Sulfur dioxide, (MtS/yr) 70.9
2020 87 (60-134) 100 (62-117) 60 (60-101) 100 (66-105) 75 (52-112) 61 (48-101)
2050 81 (64-139) 64 (47-120) 40 (40-64) 105 (78-141) 69 (29-69) 56 (42-107)
2100 40 (27-83) 28 (26-71) 20 (20-27) 60 (60-93) 25 (11-25) 48 (33-48)

Methane, (MtCH4/yr) 310
2020 416 (415-479) 421 (400-444) 415 (415-466) 424 (354-493) 377 (377-430) 384 (384-469)
2050 630 (511-636) 452 (452-636) 500 (492-500) 598 (402-671) 359 (359-546) 505 (482-536)
2100 735 (289-735) 289 (289-640) 274 (274-291) 889 (549-1069) 236 (236-579) 597 (465-613)

a The uncertainties in the SRES emissions for non-CO2 greenhouse gases are generally greater than those for energy CO2. Therefore, the ranges of non-CO2 GHG emissions provided in
the Report may not fully reflect the level of uncertainty compared to CO2, for example only a single model provided the sole value for halocarbon emissions.

Table 3a: Overview of GHG, SO2, and ozone precursor emissionsa in 1990, 2020, 2050, and 2100, and cumulative carbon dioxide emissions to 2100. Bold numbers show
the value for the illustrative scenario and the numbers between brackets show the value for the range across all 40 SRES scenarios in the six scenario groups that
constitute the four families. Units are given in the table.
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Numerical 
Climate Modeling 

“delta” method 
Warming signal 

 
2000 1990 1980 

Control 
Scenario (20C3M) 

Ecuaciones de conservación y estado 

v = (u, v, w), T, p, ρ = 1/α y q 

2010 2020 2030 2040 2050 2060 2070 2080 2090 

Future 
B1, A1B, A2 scenarios 
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ERA40 20C_1 

20C_3 20C_2 

Annual change in sfc air temperature change 
(1986-2000) - (1961-1990) 

Internal 
variability 
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GCMs in CMIP3 
(IPCC-AR4) 

PCMDI Workshop on Analyses of Climate Model Simulations 
for the IPCC AR4, Honolulu, Hawaii, March 1-4, 2005 K.E. Taylor

Number of models contributing data for each experiment
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UNCERTAINTY: 
Emission Scenarios 
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Scenarios  
IPCC-AR4 A1B 

(2007) 
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Muti-Model 
Uncertainty: 

GCM Selection 
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Mapping Model 
Agreement 

ensembles, when low signal-to-noise or model disagree-
ment play a role, individually or in concert.

2. Method

[7] SPM.7 represented by colors the value of the multi-
model averages and by stippling the areas where at least
90% of the models agreed on the sign of the change. When
less than 66% of the models agreed in sign the map was left
white, to indicate lack of agreement and therefore lack of
any robust information about the direction of future change.
[8] Our method explicitly considers statistical significance

in the choice of coloring or not, and stippling or not. Dif-
ferently from SPM.7, therefore, we distinguish the case
where models do not agree in sign but are still within the
boundaries of natural variability - in which case we argue
that information is available, and we still use colors to rep-
resent the multimodel mean – from the case where models
do not agree and simulate a significant change – in which
case we argue that we truly have conflicting information,
originating from the different models different responses to
forcings – and we leave the corresponding areas white.
There will be areas where the emergence of the signal from
the noise will happen consistently across the multimodel
ensemble (a majority of models will agree on significance
and sign). For these areas we will use color to indicate the
multimodel mean and stippling to indicate agreement in the
significance and the sign.
[9] The method thus uses the following steps, grid point

by grid point (note that our results will be dependent on the
resolution of model output, and on the level of regional
aggregation that is performed before analyzing the signifi-
cance of the changes): 1) Test for significant change in each
of the models individually with a t-test comparing the mean
of the reference and the future period, 2a) if less than X =
50% of the models show a significant change then show the
multimodel mean change in color, 2b) if more than 50% of
the models show significant change then test for agreement
in sign by the following criteria, 3a) if less than Y = 80% of
the significant models agree on the sign then show the grid
point as white, 3b) if more than 80% agree on the sign show
it in color with stippling. The X and Y percentages are of
course a subjective choice. They could be chosen differently
depending on the desired level of confidence. Also note that
consistency in the sign of the forced signal is considered
here, but other criteria could be devised to consider agree-
ment in magnitude. The conceptual idea would be similar in
all cases.
[10] One could take a more formal approach to the choice

of X and Y considering that we can regard the behavior of
each model (significant or not, agreeing in sign or not) as the
realization of a binary variable having – under the null
hypothesis ! 50% chance of turning out 0 or 1. Under this
model, with p = 0.5, we can compute the expected number
of successes for N trials, N being the number of models
considered, which equals p"N, and the variance of the dis-
tribution of successes, equal to N"p"(1 ! p). We can then
choose a range that covers 95% of the probability for the
variable “number of successes” under the hypothesis of
random and independent trials (leaving the issue of charac-
terizing model dependence for other discussions) and choose
X and Y accordingly, thus protecting ourselves from random
occurrences of disagreement. We are not, in this paper,

especially focused on the values of X and Y. In particular,
we chose not to replicate the IPCC choices of 66% and 90%
in order not to draw special attention to these quantities,
which coincide with what IPCC uses as boundaries for a
probabilistic statement to signify a likely (>66%) or very
likely (>90%) outcome [Mastrandrea et al., 2010]. We are
here considering a fraction of models from an ensemble of
opportunity and we want to explicitly separate our choices of
X and Y from more formal assessment of confidence or
likelihood, which would necessitate further considerations
(e.g., of model dependencies, sampling, model performance,
and common structural errors) than simple empirical fre-
quencies from a multimodel ensemble.
[11] Other more sophisticated methods to quantify internal

variability (e.g. using control runs or multiple ensemble
members for each model) are possible, but again our concept
is generic. The criteria used here are deliberately kept simple
and transparent, and only one transient simulation from each
model is required. The proposed measures do not consider
model dependence [Masson and Knutti, 2011a; Pirtle et al.,
2010]. The significance of the signal and model agreement
on it also depends on the spatial scale [Hawkins and Sutton,
2011; Masson and Knutti, 2011b], and model agreement has
been shown to be better if regions with similar base climate
and change are carefully chosen [Mahlstein and Knutti,
2010].

3. Results

[12] The results of the original method used in SPM.7 and
the new method are shown in Figure 1 for short term and
long term projections and for both temperature and precipi-
tation. Results are shown for December to February for
illustration; results for June to August are given in the
auxiliary material.1 21 models from the CMIP3 archive
[Meehl et al., 2007a] are used.
[13] For temperature, changes soon are significant and

models agree on the sign (Figure 1a). The two methods
produce results that are almost identical (Figures 1a and 1b).
For precipitation, using the IPCC method and looking out to
2020 (Figure 1c), however, the map is mostly white, but in
fact models agree that the signal is just small and has not
emerged from noise (as our new method depicted in
Figure 1d clearly shows). For the new method both the
number of white grid points and those with stippling
increase with time, as expected as the signal emerges, but the
overall pattern of change is similar for both time periods.
[14] An interesting test is to apply the two methods to

an initial condition ensemble of a single model (in this
case 8 members from an initial condition ensemble with
CCSM3). Figure 2 shows that even in this case the IPCC
method produces large white areas in a picture like SPM.7.
This makes no sense, as in this case model uncertainty is
absent altogether and, by construction, there must be no
inconsistency of model response among the different simu-
lations. The new method shows clearly that the early decades
have no significant signal. Towards the end of the century,
some areas start to show significant signals, but there are no
white areas indicating inconsistency since all members come
from the same model (Figure 2b, right).

1Auxiliary materials are available in the HTML. doi:10.1029/
2011GL049863.
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Mapping model agreement on future climate projections

Claudia Tebaldi,1 Julie M. Arblaster,2,3 and Reto Knutti4
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[1] Climate change projections are often based on simulations
from multiple global climate models and are presented as
maps with some form of stippling or measure of robustness
to indicate where different models agree on the projected
anthropogenically forced changes. The criteria used to
determine model agreement, however, often ignore the
presence of natural internal variability. We demonstrate that
this leads to misleading presentations of the degree of
model consensus on the sign and magnitude of the change
if the ratio of the signal from the externally forced change
to internal variability is low. We present a simple alternative
method of depicting multimodel projections which clearly
separates lack of climate change signal from lack of model
agreement by assessing the degree of consensus on the
significance of the change as well as the sign of the change.
Our results demonstrate that the common interpretation of
lack of model agreement in precipitation projections is
largely an artifact of the large noise from climate variability
masking the signal, an issue exacerbated by performing
analyses at the grid point scale. We argue that separating
more clearly the case of lack of agreement from the case of
lack of signal will add valuable information for stake-holders’
decision making, since adaptation measures required in the
two cases are potentially very different. Citation: Tebaldi, C.,
J. M. Arblaster, and R. Knutti (2011), Mapping model agreement
on future climate projections, Geophys. Res. Lett., 38, L23701,
doi:10.1029/2011GL049863.

1. Introduction

[2] Different global climate models produce different out-
comes for future climate change even under the same future
pathway of greenhouse gas concentrations. Methods are
being developed that try to synthesize different projections in
the now paradigmatic multimodel approach [Knutti et al.,
2010; Meehl et al., 2007a; Smith et al., 2009; Tebaldi and
Knutti, 2007; Tebaldi et al., 2006], but in many cases only
simple criteria are used to quantify and display agreement of
the projected anthropogenic changes, e.g. the ratio between
the spread across models (measured as one or two standard
deviations) compared to the multimodel mean response
[Deser et al., 2011; Meehl et al., 2007b, Figure 10.9], or the
number of models agreeing on the sign of change, adopted in
the Intergovernmental Panel on Climate Change’s [2007]

Figure SPM.7 for precipitation (SPM.7 from now on). The
idea is that if multiple models, based on different but plau-
sible assumptions, simplifications and parameterizations,
agree on a result, we have higher confidence than if the result
is based on a single model, or if models disagree on the result.
A more in-depth discussion of this point is given by Räisänen
[2007] and Schaller et al. [2011].
[3] As pointed out by recent studies [Deser et al., 2011;

Hawkins and Sutton, 2009, 2011], a major source of
uncertainty besides model spread is internal natural vari-
ability of the system. This becomes increasingly relevant as
attention is focused on short term projections and predic-
tions and decadal predictability experiments are performed
[Meehl et al., 2009], and as interest is focused on regional
details of future changes. At these shorter timescales and
smaller spatial scales the climate change signal decreases
relative to the internally generated noise of the climate sys-
tem [Mahlstein et al., 2011]. Temperature projections benefit
from a high signal-to-noise ratio even for small spatial scales
and short term horizons, while precipitation change has the
opposite characteristic. Attribution studies also confirm this
dichotomy. The signal of an externally forced temperature
change has already emerged from the noise generated by
natural variability in all continents [Stott, 2003] while chan-
ges outside of natural variability in precipitation have been
detected only for a zonal mean pattern over the whole globe
[Zhang et al., 2007]. Internal variability dominates at the grid
point scale for precipitation projections over the next few
decades [Deser et al., 2011; Hawkins and Sutton, 2011], so
for short term projections and variables with low signal-to-
noise ratios, simple criteria for model agreement of the forced
change that do not take into account the effect of natural
variability are prone to misinterpretation when they equate
lack of model consensus with lack of information.
[4] Representations of future projections in temperature

and precipitation as global maps, of the type found in SPM.7
(see, e.g., Figure 1c) may lead to such misinterpretations of
climate change projections, and we propose a new method
addressing this limitation. Of particular concern are swaths
of white that cover large regions (where the model consen-
sus on the sign of the change is less than 66%) and the
sparseness of the stippling in SPM.7 (where the consensus is
less than 90%). The typical interpretation of the white areas
is that projections for precipitation are inconsistent between
different models [Anderson et al., 2009]. But as pointed out
recently, the lack of robust trends is partly attributable to a
low signal-to-noise ratio, rather than inconsistent model
responses [Schaller et al., 2011; Power et al., 2011]. There
is a fundamental difference between lack of signal (i.e., lack
of detection of a significant response to external forcing)
versus lack of agreement in the signal, i.e. between regions
where the change is not statistically significant and regions
where different models produce significant changes of
opposite sign (disagreement over the magnitude of change
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[1] Climate change projections are often based on simulations
from multiple global climate models and are presented as
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to indicate where different models agree on the projected
anthropogenically forced changes. The criteria used to
determine model agreement, however, often ignore the
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this leads to misleading presentations of the degree of
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to internal variability is low. We present a simple alternative
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separates lack of climate change signal from lack of model
agreement by assessing the degree of consensus on the
significance of the change as well as the sign of the change.
Our results demonstrate that the common interpretation of
lack of model agreement in precipitation projections is
largely an artifact of the large noise from climate variability
masking the signal, an issue exacerbated by performing
analyses at the grid point scale. We argue that separating
more clearly the case of lack of agreement from the case of
lack of signal will add valuable information for stake-holders’
decision making, since adaptation measures required in the
two cases are potentially very different. Citation: Tebaldi, C.,
J. M. Arblaster, and R. Knutti (2011), Mapping model agreement
on future climate projections, Geophys. Res. Lett., 38, L23701,
doi:10.1029/2011GL049863.
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deviations) compared to the multimodel mean response
[Deser et al., 2011; Meehl et al., 2007b, Figure 10.9], or the
number of models agreeing on the sign of change, adopted in
the Intergovernmental Panel on Climate Change’s [2007]
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change that do not take into account the effect of natural
variability are prone to misinterpretation when they equate
lack of model consensus with lack of information.
[4] Representations of future projections in temperature

and precipitation as global maps, of the type found in SPM.7
(see, e.g., Figure 1c) may lead to such misinterpretations of
climate change projections, and we propose a new method
addressing this limitation. Of particular concern are swaths
of white that cover large regions (where the model consen-
sus on the sign of the change is less than 66%) and the
sparseness of the stippling in SPM.7 (where the consensus is
less than 90%). The typical interpretation of the white areas
is that projections for precipitation are inconsistent between
different models [Anderson et al., 2009]. But as pointed out
recently, the lack of robust trends is partly attributable to a
low signal-to-noise ratio, rather than inconsistent model
responses [Schaller et al., 2011; Power et al., 2011]. There
is a fundamental difference between lack of signal (i.e., lack
of detection of a significant response to external forcing)
versus lack of agreement in the signal, i.e. between regions
where the change is not statistically significant and regions
where different models produce significant changes of
opposite sign (disagreement over the magnitude of change
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ensembles, when low signal-to-noise or model disagree-
ment play a role, individually or in concert.

2. Method

[7] SPM.7 represented by colors the value of the multi-
model averages and by stippling the areas where at least
90% of the models agreed on the sign of the change. When
less than 66% of the models agreed in sign the map was left
white, to indicate lack of agreement and therefore lack of
any robust information about the direction of future change.
[8] Our method explicitly considers statistical significance

in the choice of coloring or not, and stippling or not. Dif-
ferently from SPM.7, therefore, we distinguish the case
where models do not agree in sign but are still within the
boundaries of natural variability - in which case we argue
that information is available, and we still use colors to rep-
resent the multimodel mean – from the case where models
do not agree and simulate a significant change – in which
case we argue that we truly have conflicting information,
originating from the different models different responses to
forcings – and we leave the corresponding areas white.
There will be areas where the emergence of the signal from
the noise will happen consistently across the multimodel
ensemble (a majority of models will agree on significance
and sign). For these areas we will use color to indicate the
multimodel mean and stippling to indicate agreement in the
significance and the sign.
[9] The method thus uses the following steps, grid point

by grid point (note that our results will be dependent on the
resolution of model output, and on the level of regional
aggregation that is performed before analyzing the signifi-
cance of the changes): 1) Test for significant change in each
of the models individually with a t-test comparing the mean
of the reference and the future period, 2a) if less than X =
50% of the models show a significant change then show the
multimodel mean change in color, 2b) if more than 50% of
the models show significant change then test for agreement
in sign by the following criteria, 3a) if less than Y = 80% of
the significant models agree on the sign then show the grid
point as white, 3b) if more than 80% agree on the sign show
it in color with stippling. The X and Y percentages are of
course a subjective choice. They could be chosen differently
depending on the desired level of confidence. Also note that
consistency in the sign of the forced signal is considered
here, but other criteria could be devised to consider agree-
ment in magnitude. The conceptual idea would be similar in
all cases.
[10] One could take a more formal approach to the choice

of X and Y considering that we can regard the behavior of
each model (significant or not, agreeing in sign or not) as the
realization of a binary variable having – under the null
hypothesis ! 50% chance of turning out 0 or 1. Under this
model, with p = 0.5, we can compute the expected number
of successes for N trials, N being the number of models
considered, which equals p"N, and the variance of the dis-
tribution of successes, equal to N"p"(1 ! p). We can then
choose a range that covers 95% of the probability for the
variable “number of successes” under the hypothesis of
random and independent trials (leaving the issue of charac-
terizing model dependence for other discussions) and choose
X and Y accordingly, thus protecting ourselves from random
occurrences of disagreement. We are not, in this paper,

especially focused on the values of X and Y. In particular,
we chose not to replicate the IPCC choices of 66% and 90%
in order not to draw special attention to these quantities,
which coincide with what IPCC uses as boundaries for a
probabilistic statement to signify a likely (>66%) or very
likely (>90%) outcome [Mastrandrea et al., 2010]. We are
here considering a fraction of models from an ensemble of
opportunity and we want to explicitly separate our choices of
X and Y from more formal assessment of confidence or
likelihood, which would necessitate further considerations
(e.g., of model dependencies, sampling, model performance,
and common structural errors) than simple empirical fre-
quencies from a multimodel ensemble.
[11] Other more sophisticated methods to quantify internal

variability (e.g. using control runs or multiple ensemble
members for each model) are possible, but again our concept
is generic. The criteria used here are deliberately kept simple
and transparent, and only one transient simulation from each
model is required. The proposed measures do not consider
model dependence [Masson and Knutti, 2011a; Pirtle et al.,
2010]. The significance of the signal and model agreement
on it also depends on the spatial scale [Hawkins and Sutton,
2011; Masson and Knutti, 2011b], and model agreement has
been shown to be better if regions with similar base climate
and change are carefully chosen [Mahlstein and Knutti,
2010].

3. Results

[12] The results of the original method used in SPM.7 and
the new method are shown in Figure 1 for short term and
long term projections and for both temperature and precipi-
tation. Results are shown for December to February for
illustration; results for June to August are given in the
auxiliary material.1 21 models from the CMIP3 archive
[Meehl et al., 2007a] are used.
[13] For temperature, changes soon are significant and

models agree on the sign (Figure 1a). The two methods
produce results that are almost identical (Figures 1a and 1b).
For precipitation, using the IPCC method and looking out to
2020 (Figure 1c), however, the map is mostly white, but in
fact models agree that the signal is just small and has not
emerged from noise (as our new method depicted in
Figure 1d clearly shows). For the new method both the
number of white grid points and those with stippling
increase with time, as expected as the signal emerges, but the
overall pattern of change is similar for both time periods.
[14] An interesting test is to apply the two methods to

an initial condition ensemble of a single model (in this
case 8 members from an initial condition ensemble with
CCSM3). Figure 2 shows that even in this case the IPCC
method produces large white areas in a picture like SPM.7.
This makes no sense, as in this case model uncertainty is
absent altogether and, by construction, there must be no
inconsistency of model response among the different simu-
lations. The new method shows clearly that the early decades
have no significant signal. Towards the end of the century,
some areas start to show significant signals, but there are no
white areas indicating inconsistency since all members come
from the same model (Figure 2b, right).

1Auxiliary materials are available in the HTML. doi:10.1029/
2011GL049863.
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Table 1 CMIP5 Earth System Models considered in this study

Model Hor. Resolution Reference

CanESM2 2.8 ⇤ 2.8� Chylek et al (2011)
CNRM-CM5 1.4 ⇤ 1.4� Voldoire et al (2011)
HadGEM2-ES 1.875 ⇤ 1.25� Collins et al (2011)
IPSL-CM5-MR 1.5 ⇤ 1.27� Dufresne et al (submitted)
MIROC-ESM 2.8 ⇤ 2.8� Watanabe et al (2011)
MPI-ESM-LR 1.8 ⇤ 1.8� Raddatz et al (2007); Jungclaus et al (2010)
NorESM1-M 1.5 ⇤ 1.9� Kirkevag et al (2008); Seland et al (2008)

taken into account (except 2m air temperature, T2)
for defining the lateral boundary conditions in the pro-
cess of nesting a Regional Climate Model (RCM) into a
global one. The period under study is 1979-2005 and in
case daily mean values where not already provided by
the original data, they were calculated upon 6-hourly
instantaneous values.

As reference historical data for validation, we con-
sider the European Centre for Medium Range Weather
Forecasts ERA-interim (INTERIM) (Dee et al, 2011)
and the Japanese Meteorological Agency JRA-25 (JRA25)
reanalysis data (Onogi et al, 2007). Due to distinct na-
tive horizontal resolutions (see Table 1), both reanalysis
and ESM-data were regridded to a regular grid of 2.5�

by using bilinear interpolation, which is a common step
in downscaling- and GCM-performance studies.

Table 2 Variables considered in this study.

Code Name Height Unit
Z Geopotential 500hPa m2s�2

T Temperature 2m, 850hPa K
Q Specific humidity 850hPa kg kg�1

U U-wind 850hPa ms�1

V V-wind 850hPa ms�1

SLP Sea-level pressure mean sea-level Pa

3 Methods

The principal measure for evaluating reanalysis uncer-
tainty and ESM-performance is the the mean di↵erence
(bias), as well as the p-value of the two-sided paired t-
test (H0 = bias of the di↵erence series is zero). As the
bias is calculated over a widespread range of climatic
regimes and for the four principal seasons of the year, it
is normalized by the standard deviation of INTERIM,
thereby taking into account that e.g. a cold bias of 1�C
is much more important in the Tropics than in the Mid-
Latitudes.

To additionally assess errors in higher order mo-
ments, we apply the two sample Kolmogorov-Smirnov

test (KS-test) on the anomaly/unbiased data, the latter
being obtained by subtracting the seasonal mean from
each data gridbox. The KS-test is a non-parametric
hypothesis test checking the the null hypothesis (H0)
that two candidate samples (e.g. reanalysis and ESM-
sample) come from the same underlying theoretical dis-
tribution. It is defined by the following statistic:

KS–statistic =
2n
max
i=1

|E(zi)� I(zi)| (1)

where n is the length of the time-series, E and I are the
empirical cumulative frequencies from a given Earth
System Model and the INTERIM reanalysis, respec-
tively, and zi denotes the i-th data value of the sorted
joined sample. This statistic is bounded between zero
and one, with low values indicating distributional sim-
ilarity (see Brands et al, 2012, for a description of this
score and its advantages over other standard alterna-
tives, such as the PDF-score).

Since the daily time series applied in this study are
serially correlated, we calculate their e↵ective sample
size n⇤ before estimating the p-value of the KS-statistic
and bias in order to avoid committing too many type-
one errors (i.e. erroneous rejections of the H0). Under
the assumption that the underlying time-series follow a
first-order autoregressive process, n⇤ is defined as fol-
lows Wilks (2006):

n⇤ = n
1� p1
1 + p1

(2)

where n (n⇤) is the (e↵ective) sample size and p1 is the
lag-1 autocorrelation coe�cient.

The validation is applied on a seasonal basis, i.e.
season specific samples of daily data are underlying the
validation procedure.

Reanalysis uncertainty is assessed by validating the
variables from JRA25 against those from INTERIM. In
case the resulting distributional di↵erences are 1) sig-
nificant (↵ = 0.05) and 2) higher than those obtained
from comparing a given ESM to INTERIM, the cor-
responding geographical area is highlighted, indicating
that reanalysis uncertainty is higher than the model
error and that model ranking is essentially impossible.
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Table 1 CMIP5 Earth System Models considered in this study

Model Hor. Resolution Reference

CanESM2 2.8 ⇤ 2.8� Chylek et al (2011)
CNRM-CM5 1.4 ⇤ 1.4� Voldoire et al (2011)
HadGEM2-ES 1.875 ⇤ 1.25� Collins et al (2011)
IPSL-CM5-MR 1.5 ⇤ 1.27� Dufresne et al (submitted)
MIROC-ESM 2.8 ⇤ 2.8� Watanabe et al (2011)
MPI-ESM-LR 1.8 ⇤ 1.8� Raddatz et al (2007); Jungclaus et al (2010)
NorESM1-M 1.5 ⇤ 1.9� Kirkevag et al (2008); Seland et al (2008)

taken into account (except 2m air temperature, T2)
for defining the lateral boundary conditions in the pro-
cess of nesting a Regional Climate Model (RCM) into a
global one. The period under study is 1979-2005 and in
case daily mean values where not already provided by
the original data, they were calculated upon 6-hourly
instantaneous values.

As reference historical data for validation, we con-
sider the European Centre for Medium Range Weather
Forecasts ERA-interim (INTERIM) (Dee et al, 2011)
and the Japanese Meteorological Agency JRA-25 (JRA25)
reanalysis data (Onogi et al, 2007). Due to distinct na-
tive horizontal resolutions (see Table 1), both reanalysis
and ESM-data were regridded to a regular grid of 2.5�

by using bilinear interpolation, which is a common step
in downscaling- and GCM-performance studies.

Table 2 Variables considered in this study.

Code Name Height Unit
Z Geopotential 500hPa m2s�2

T Temperature 2m, 850hPa K
Q Specific humidity 850hPa kg kg�1

U U-wind 850hPa ms�1

V V-wind 850hPa ms�1

SLP Sea-level pressure mean sea-level Pa

3 Methods

The principal measure for evaluating reanalysis uncer-
tainty and ESM-performance is the the mean di↵erence
(bias), as well as the p-value of the two-sided paired t-
test (H0 = bias of the di↵erence series is zero). As the
bias is calculated over a widespread range of climatic
regimes and for the four principal seasons of the year, it
is normalized by the standard deviation of INTERIM,
thereby taking into account that e.g. a cold bias of 1�C
is much more important in the Tropics than in the Mid-
Latitudes.

To additionally assess errors in higher order mo-
ments, we apply the two sample Kolmogorov-Smirnov

test (KS-test) on the anomaly/unbiased data, the latter
being obtained by subtracting the seasonal mean from
each data gridbox. The KS-test is a non-parametric
hypothesis test checking the the null hypothesis (H0)
that two candidate samples (e.g. reanalysis and ESM-
sample) come from the same underlying theoretical dis-
tribution. It is defined by the following statistic:

KS–statistic =
2n
max
i=1

|E(zi)� I(zi)| (1)

where n is the length of the time-series, E and I are the
empirical cumulative frequencies from a given Earth
System Model and the INTERIM reanalysis, respec-
tively, and zi denotes the i-th data value of the sorted
joined sample. This statistic is bounded between zero
and one, with low values indicating distributional sim-
ilarity (see Brands et al, 2012, for a description of this
score and its advantages over other standard alterna-
tives, such as the PDF-score).

Since the daily time series applied in this study are
serially correlated, we calculate their e↵ective sample
size n⇤ before estimating the p-value of the KS-statistic
and bias in order to avoid committing too many type-
one errors (i.e. erroneous rejections of the H0). Under
the assumption that the underlying time-series follow a
first-order autoregressive process, n⇤ is defined as fol-
lows Wilks (2006):

n⇤ = n
1� p1
1 + p1

(2)

where n (n⇤) is the (e↵ective) sample size and p1 is the
lag-1 autocorrelation coe�cient.

The validation is applied on a seasonal basis, i.e.
season specific samples of daily data are underlying the
validation procedure.

Reanalysis uncertainty is assessed by validating the
variables from JRA25 against those from INTERIM. In
case the resulting distributional di↵erences are 1) sig-
nificant (↵ = 0.05) and 2) higher than those obtained
from comparing a given ESM to INTERIM, the cor-
responding geographical area is highlighted, indicating
that reanalysis uncertainty is higher than the model
error and that model ranking is essentially impossible.
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Advanced Review

State-of-the-art with regional
climate models
Markku Rummukainen∗

Regional climate models are used by a large number of groups, for more or less
all regions of the world. Regional climate models are complementary to global
climate models. A typical use of regional climate models is to add further detail
to global climate analyses or simulations, or to study climate processes in more
detail than global models allow. The relationship between global and regional
climate models is much akin to that of global and regional weather forecasting
models. Over the past 20 years, the development of regional climate models has
led to increased resolution, longer model runs, and steps towards regional climate
system models. During recent years, community efforts have started to emerge in
earnest, which can be expected to further advance the state-of-the-art in regional
climate modeling. Applications of regional climate models span both the past
and possible future climates, facilitating climate impact studies, information and
support to climate policy, and adaptation.  2010 John Wiley & Sons, Ltd. WIREs Clim Change
2010 1 82–96

Global climate models (GCMs) are a fundamental
research tool for the understanding of climate.

Regional climate models (RCMs) are a complemen-
tary research method, allowing more detailed process
studies and simulation of regional and even local con-
ditions. In so doing, they provide key input to climate
impact studies as well as to adaptation planning, deal-
ing with possible damages and opportunities related
to climate variability and change. RCMs are thus
vehicles for both research and applications.

RCMs are not a new concept. They are at their
core limited area models that are used in numerical
weather prediction (NWP). The pioneering regional
climate modeling efforts were those of Refs 1 and 2
For more information on the earlier developments,
the reader is referred to Refs 3–7. Today, regional
climate modeling encompasses a large international
community and covers most geographical regions of
the globe (see Figure 1).

This article describes the essential principles of
RCMs, outlining their potential and acknowledges
fundamental limitations, for the interested interdis-
ciplinary readership. Consideration is also given to
the role of RCMs vis-à-vis applications to climate
projections. Other major uses are mentioned in brief,

∗Correspondence to: Markku.Rummukainen@smhi.se

Swedish Meteorological and Hydrological Institute, SE-601 76
Norrköping, Sweden

DOI: 10.1002/wcc.008

such as climate process and climate system studies.
The references provided are not exhaustive and the
discussion does not venture into deep detail. Weather
and seasonal forecasting applications are outside the
scope of this review.

THE DOWNSCALING CONCEPT

The climate system is global. Observations, theory,
and models are all needed in climate research.
Comprehensive climate models are based on physical
laws and allow for numerical simulations. The
climate system is characterized by a broad range of
spatial scales and timescales. Consequently, GCMs
can effectively address large-scale climate features
such as the general circulation of the atmosphere
and the ocean, and sub-continental patterns of, for
example, temperature and precipitation. Their formal
resolution (grid scale) is at best around 100–200 km.8

Their real resolution is more like 6–8 grid distances,
i.e., of the order of 1000 km.9 This falls short
of many key regional and local climate aspects,
e.g. intensive precipitation. Very high global model
resolution would of course give rise to simulation of
regional and local aspects, see e.g., Ref 10. GCMs of
this kind are, however, still not feasible due to their
high computational cost. Other methods are therefore
needed, which is the backdrop to downscaling (cf.
Figure 2).

82  2010 John Wiley & Sons, L td. Volume 1, January /February 2010
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Evaluation of the mean and extreme precipitation regimes
from the ENSEMBLES regional climate multimodel
simulations over Spain
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[1] A state‐of‐the‐art ensemble of regional climate model (RCM) simulations provided by
the European Union–funded project ENSEMBLES is used to test the ability of RCMs to
reproduce the mean and extreme precipitation regimes over Spain. To this aim, ERA‐40–
driven simulations at 25 km resolution are compared with the 20 km daily precipitation
grid Spain02, considering the period 1960–2000. This gridded data set has been interpolated
from thousands of quality‐controlled stations capturing the spatial variability of precipitation
over this RCM benchmark‐like area with complex orography and influence of both Atlantic
and Mediterranean climates. The results show a good representation of the mean regimes
and the annual cycle but an overestimation of rainfall frequency leading to a wrong
estimation of wet and dry spells. The amount of rainfall coming from extreme events is also
deficient in the RCMs. The use of the multimodel ensemble improves the results of the
individual models; moreover, discarding the worst performing models for the particular area
and variable leads to improved results and reduced spread.

Citation: Herrera, S., L. Fita, J. Fernández, and J. M. Gutiérrez (2010), Evaluation of the mean and extreme precipitation
regimes from the ENSEMBLES regional climate multimodel simulations over Spain, J. Geophys. Res., 115, D21117,
doi:10.1029/2010JD013936.

1. Introduction

[2] Dynamical downscaling of a global climate model
(GCM) using a regional climate model (RCM) is a widely
used technique to obtain high‐resolution information about
projected climate change scenarios [Leung et al., 2003;Wang
et al., 2004; Laprise, 2008]. Basically, this technique consists
of solving the governing equations of the atmosphere at
high resolution in a particular region (e.g., Europe) using the
coarse GCM output as boundary conditions. In this way,
it is expected that the RCM dynamics will provide highly
resolved climatic information that the coarse resolution GCM
cannot obtain [Elía and Laprise, 2002; Vidale et al., 2003;
Castro et al., 2005]. High‐resolution climatic information is
demanded by end users to analyze the impacts produced in
different sectors by changes in the mean or extreme regimes
of a variety of meteorological variables [Fronzek and Carter,
2007]. Precipitation is a key variable in sectors such as
agriculture and hydrology and it is one of the variables with
the largest uncertainty in RCMs, due to the large number
of parameterized processes involved in its determination.
The present study analyzes the performance of several
RCMs from the European Union (EU)–funded project

ENSEMBLES [van der Linden and Mitchell, 2009] nested in
a common global reanalysis to reproduce the observed mean
and extreme regimes of precipitation over Spain. The com-
bined use of the ensemble of RCMs (multimodel ensemble)
is compared with the individual RCM results.
[3] Since RCMs are limited to the quality of the GCM

information [Déqué et al., 2007], the evaluation of the skill
of an RCM in reproducing the observed climate should be
done by providing reanalysis data (as a surrogate of a perfect
GCM) as boundary conditions. Even though different RCMs
can be compared when forced by the same GCM boundaries
[Jacob et al., 2007], this kind of experiment makes difficult to
discern whether the observed biases arise from the global or
the regional model.
[4] ENSEMBLES is the latest in a series of EU‐funded

projects dealing with multimodel dynamical downscaling of
large‐scale climate information over Europe: Regionalization
(1993–1994), RACCS (1995–1996) [Machenhauer et al.,
1998], MERCURE (1997–2000), and PRUDENCE (2001–
2004) [Christensen et al., 2007]. These projects paved the
way for ENSEMBLES, where the latest‐generation RCMs
downscaled with unprecedented resolution a set of GCM
simulations (for present control and the future scenario A1B)
and also “perfect” boundaries from reanalysis. The perfect
boundary approach was missing in the predecessor project
PRUDENCE, where RCMs where only nested into GCMs.
Thus, ENSEMBLES enables, one decade after MERCURE,
a direct comparison of the performance of different state‐of‐
the‐art RCMs over Europe.
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Part I: Scenario Development Using Downscaling Methods
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Abstract

The majority of climate change impact assessments focus on potential impacts at the local ⁄
regional scale. Climate change scenarios with a fine spatial resolution are essential components
of these assessments. Scenarios must be designed with the goals of the assessment in mind.
Often the scientists and stakeholders leading, or participating in, impact assessments are unaware
of the challenging and time-consuming nature of climate scenario development. The intent of
this review, presented in two parts, is to strengthen the communication between the developers
and users of climate scenarios and ultimately to improve the utility of climate impact assess-
ments. In Part I, approaches to climate downscaling are grouped into three broad categories –
dynamic downscaling, empirical-dynamic downscaling and disaggregation downscaling methods
– and the fundamental considerations of the different methods are highlighted and explained for
non-climatologists. Part II focuses on the application of climate change scenarios.

Introduction

Scientists from many disciplines and stakeholders with a wide range of backgrounds are
undertaking climate impact assessments in response to awareness of the potential impacts
of climate variability and change on natural and human systems. For the most part, these
assessments target a specific phenomenon, activity or system, and are constrained to lim-
ited geographic areas (Carter et al. 2007). Climate scenarios are the traditional starting
point for a local ⁄ regional climate change impact assessment, particularly those employing
an end-to-end assessment strategy that links the scenarios in a sequential manner to sev-
eral models such as ecological ⁄process models, economic models, decision-making models
and policy frameworks (Figure 1).

Very simply, a climate scenario is a plausible representation of the future climate (Carter
et al. 2001). The terms ‘climate scenario’ and ‘climate change scenario’ are frequently
used interchangeably, although some authors (e.g. Mearns et al. 2001) have argued that
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Abstract

Although downscaling methods for deriving local ⁄ regional climate change scenarios have been
extensively studied, little guidance exists on how to use the downscaled scenarios in applications
such as impact assessments. In this second part of a two-part communication, we review for non-
climate scientists a number of practical considerations when utilizing climate change scenarios.
The issues discussed are drawn from questions frequently asked by our colleagues on assessment
teams and include sources of observational data for scenario evaluation, the advantages of scenario
ensembles, adjusting for scenario biases, and the availability of archived downscaled scenarios.
Together with Part I, which reviews various downscaling methods, Part II is intended to improve
the communication between suppliers and users of local ⁄ regional climate change scenarios, with
the overall goal of improving the utility of climate impact assessments through a better under-
standing by all assessment team members of the strengths and limitations of local ⁄ regional climate
change scenarios.

Introduction

Climate change impact assessments are typically conducted at the local and regional scales,
and thus require climate change scenarios with a fine spatial resolution. These scenarios
are usually developed by applying ‘downscaling’ methods to coarser-scale output from
global climate models (GCMs). The scenarios are then employed by an assessment team
for analyses and modeling efforts unique to the specific assessment and by stakeholders to
inform decision making.

A voluminous literature exists on the development and evaluation of different down-
scaling methods, sometimes referred to as downscaling ‘comparison’ studies (Fowler and
Wilby 2007, 1543). In general, this literature was written by climate scientists for other
climate scientists. In contrast, little published guidance exists on how to use downscaled
local ⁄ regional climate change scenarios in climate impact assessments. Instead, members of
an assessment team, most of whom are not climate scientists, must sift through the formal
and informal publications of previous assessments to ascertain possible options and poten-
tial pitfalls when employing local ⁄ regional climate change scenarios in an impact assess-
ment. This omission led Fowler and Wilby (2007, 1543) to conclude that ‘there has been
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condition, the probability distributions are compared,
which accounts for differences in both the mean (bias)
and in higher-order moments. To this end, we compare
two competing scores: the statistic of the classical two-
sample KS statistic (see, e.g., Wilks 2006) and the re-
cently suggested PDF score (Perkins et al. 2007), which
has been frequently used for assessing distributional simi-
larity (Maxino et al. 2008; Pitman and Perkins 2009; Mao
et al. 2010; Brands et al. 2011a,b; Kjellstrom et al. 2010).

The PDF scores and KS statistics are calculated
separately for each season (winter and summer), con-
sidering the corresponding daily time series. Moreover,
in order to isolate distributional dissimilarities due to
errors in the first- and second-order moments, we also
consider anomalies and standardized anomalies. In
the first case, we remove the seasonal mean, whereas in
the second case we additionally divide by the seasonal
standard deviation.

As in Pitman and Perkins (2009), the PDF score is
used as a metric of agreement between the PDFs of the
two reanalysis datasets. Probability densities for both
the NCEP–NCAR ( f) and ERA-40 (g) time series are
estimated at N equally spaced bins m1, . . . , mN spanning
the range of the joined sample (in this work we consider
N 5 64). For this purpose, we apply kernel density
smoothing with Gaussian kernels, a nonparametric tech-
nique for fitting a theoretical distribution to an empirical
dataset [see Perkins et al. (2007) for details on the par-
ticular Matlab implementation]. Thereafter, the densities
are normalized by their sum, and the minimum bin values
are aggregated as follows:

PDF-score 5 !
N

i51
minff (mi), g(mi)g. (1)

Thus, the PDF score has an intuitive interpretation as
the common overlapping probability density, yielding
one for identical distributions and zero for completely
disjoint ones.

The KS test is a nonparametric statistical hypothesis
test for checking the null hypothesis (H0) that two can-
didate datasets come from the same underlying theo-
retical distribution. It is defined by the statistic

KS-statistic 5 max
2n

i51
jF(zi) 2 G(zi)j, (2)

where n is the length of the time series (ranging from
1896 to 1932 days for the DJF and JJA seasons, respec-
tively); F and G are the empirical cumulative frequencies
of the NCEP–NCAR and ERA-40 time series, respec-
tively; and zi denotes the ith data value of the sorted
joined sample. This statistic is also bounded between

zero and one, but, in contrast to the PDF score, the dis-
tributional similarity is indicated by low values.

An advantage of the KS statistic is that its theoretical
distribution is known a priori. Consequently, p values for
hypothesis testing (H0: both the ERA-40 and NCEP–
NCAR time series come from the same underlying dis-
tribution) can be directly estimated (Wilks 2006). For the
PDF score, however, no theoretical distribution is avail-
able and computationally costly Monte-Carlo methods
cannot be circumvented if a statistical inference is to be
made (Brands et al. 2011a).

Note that the daily time series used in this study are
serially correlated; that is, the number of independent
data points in a given time series (the effective sample
size n*) is much lower than the sample size n. Hence, the
KS test’s assumption of independent data points does
not hold and artificially low p values for the KS statistic
are obtained, leading to too many type-1 errors (i.e.,
rejections of the H0 of equal distributions when it is
actually true). Thus, the effective sample size n* is cal-
culated separately for each NCEP–NCAR and ERA-40
time series before calculating the p value of the KS
statistic, assuming that the underlying data follow a first-
order autoregressive process (Wilks 2006):

n* 5 n
1 2 p1

1 1 p1

, (3)

where n* is the effective sample size and p1 is the lag-1
autocorrelation coefficient.

In addition to these distribution-oriented scores, the
correspondence of the day-to-day sequences is estimated
with the Pearson correlation coefficient. Note that both
types of differences are important from a downscaling
point of view, since they affect the distributional and se-
rial characteristics of the regionalized time series (Charles
et al. 2007; Brands et al. 2011b).

4. Results

a. Comparison of KS statistic versus PDF score

To understand which distributional similarity metric
is preferable for the present study, we first point out that
Q values in the NCEP–NCAR dataset cluster at near-
zero values at many grid boxes, which leads to a mixed
(discrete–continuous) character for this variable. This is
shown in the top and center panels of Fig. 1 for Q500 in
DJF and JJA, respectively. These panels map the rela-
tive empirical frequency (in percent) of the first of 1000
equally spaced bins and thus illustrate where and to which
degree the values for Q cluster near zero. With percent-
ages over 50%, the clustering primarily occurs over
Antarctica and Greenland, but as well is relevant over
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Comparing the distributional similarity (at a 
daily grid-box basis) between ERA40 and 
NCEP for typical predictors using both the 
classical Kolmogorov-Smirnov (KS) test and 
the more recent PDF-score. 

KS-test was found to be more appropriate. 
They both provide similar results. 
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1.  INTRODUCTION

‘All downscaling approaches will only be as accurate
as the available GCM predictors’ (Wilby et al. 1998,
p. 17).

Nowadays, statistical downscaling (SD) is a sound
and mature field that provides several techniques to
use coarse-resolution global climate models (GCMs) or
atmosphere-ocean GCMs (AOGCMs) on regional to
local scales (Hewitson & Crane 1996, Wilby & Wigley
1997, Zorita & von Storch 1999, Maraun et al. 2010).
These methods link the large-scale output of GCMs
(predictors) with simultaneous local historical observa-
tions (predictands) in the region of interest.

Selecting appropriate large-scale predictor(s) is a
key task of the SD approach. The choice depends on

the area under study (Cavazos & Hewitson 2005), the
predictand to be downscaled (Haylock et al. 2006), and
the underlying data sets (Timbal et al. 2003). To date,
most SD studies have been applied to mid-latitude cli-
mates. For these regions, some spatially robust predic-
tors have been identified when working under optimal
conditions (Cavazos & Hewitson 2005), i.e. taking the
predictor data from quasi-observations which are typi-
cally represented by reanalysis data (Hewitson & Crane
1996, Wilby et al. 2004, Sauter & Venema in press).

However, little is known about how the predictive
power of SD models trained on reanalysis data is
affected, when they are applied to GCM data (Randall
et al. 2007). In this case, the predictor choice made
under optimal conditions has to be re-evaluated with
respect to the following  criteria:
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similarity of the simulated and quasi-observed (reanalysis) probability density functions for circulation,
temperature, and humidity variables at various pressure levels, which we chose from a statistical-
downscaling point of view. Our main goals were to assess which GCM variables can be reliably used
as predictors for downscaling, and which GCMs perform especially well over the region under study.
Results showed that specific humidity is as reliably reproduced as circulation and temperature vari-
ables, and that overall performance is best for the Hadley Centre’s HADGEM2 model. Secondary goals
were to estimate the skillful scale of the models, and to measure the added value of bias correction, a
post-processing step commonly used in practice. We found that all models lack performance at the
scale of individual grid boxes, indicating that they are not robustly skillful at their smallest scale.
We also found that model performance generally improves after removing monthly bias. However,
model errors at higher-order moments, which cannot be removed by simply correcting the bias, were
common in some models.
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Except MSLP, which is a daily mean value, all data are
instantaneous records at 00:00 h UTC. Table 2 shows an
overview of the GCMs and acronyms used; for detailed
information about initial conditions, model physics, and
external forcings, see the references listed in Table 2.

In accordance with the multi-model ensemble strat-
egy (Randall et al. 2007), and in spite of common model
components (Jun et al. 2008) in the ensemble used,
each member (model) is assumed to be independent.
We worked with fully coupled GCMs, i.e. we did not
validate atmosphere-only GCMs.

The data span a 30 yr period from 1 January 1969 to
31 December 1998 and were obtained from the CERA
database of the World Data Center for Climate, Ham-
burg (http://cera-www.dkrz.de/CERA/). In total, 6
GCMs were chosen from each stream of the ENSEM-
BLES project. Stream 1 models were those used in the
Fourth Assessment Report of the Intergovernmental
Panel on Climate Change (IPCC-AR4), whereas Stream
2 models were developed within the ENSEMBLES pro-
ject. If various runs of the same GCM were available,
we selected only the first. Due to limited data availabil-
ity, some of the GCM predictor variables could not be
obtained for every model and/or pressure level and
had to be excluded from the validation procedure. For
an overview of the validated variables, see Table 3.

The main difference between the 2 generations of
models is that Stream 2 GCMs include anthropogenic
land-use change models, whereas Stream 1 models do
not, the only exception being HADGEM (Niehörster et
al. 2008, van der Linden & Mitchell 2009). Moreover, as
outlined by Niehörster et al. (2008), all GCMs are dri-
ven by anthropogenic forcing, while natural external
forcing due to the solar cycle and episodic great-vol-
cano eruptions are not taken into account. Although
the anthropogenic forcing agents are slightly different
between some GCMs (e.g. forcing of sulfate aerosols is
taken into account by all models except EGMAM and
EGMAM2; Huebener & Koerper 2008, Niehörster et al.
2008), we think that this factor is probably negligible
for the results reported in the present paper. A detailed
analysis with varying forcing configurations would be
needed to fully address this issue, but this is beyond
the scope of the present paper.

As our study is written from a downscaling point
of view, we chose the European Centre for Medium-
Range Weather Forecasts (ECMWF) ERA-40 reanaly-
sis as a reference dataset for validation, while being
well aware of possible quality problems, especially
concerning relative humidity (Ben Daoud et al. 2009).
Reanalysis data represent the only quasi-observational
data resource that offers a wide range of predictor vari-
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GCM name Acronym Stream Institution Source

BCCR-BCM2 BCM2 1 Bjerknes Centre for Climate Research, Norway Drange (2006)
CNRM-CM3 CNCM3 1 Centre National de Recherches Météorologiques, France Royer (2006)
ECHO-G EGMAM 1 Freie Universität Berlin, Germany Niehörster (2008)
IPSL-CM4 IPCM4 1 Institut Pierre Simon Laplace, France Dufresne (2007)
METO-HC-HadGEM HADGEM 1 Met Office Hadley Centre, UK Johns (2008)
MPI-ECHAM5 MPEH5 1 Max Planck Institute for Meteorology, Germany Roeckner (2007)
CNRM-CM33 CNCM33 2 Centre National de Recherches Météorologiques, France Royer (2008)
ECHO-G2 EGMAM2 2 Freie Universität Berlin, Germany Huebener & Koerper 

(2008)
IPSL-CM4v2 IPCM4V2 2 Institut Pierre Simon Laplace, France Dufresne (2009)
METO-HC-HadCM3C HADCM3C 2 Met Office Hadley Centre, UK Johns (2009a)
METO-HC-HadGEM2 HADGEM2 2 Met Office Hadley Centre, UK Johns (2009b)
MPI-ECHAM5C MPEH5C 2 Max Planck Institute for Meteorology, Germany Roeckner (2008)

Table 2. Overview of the global climate models (GCMs) used in the present study, taken from the 2 streams of the ENSEMBLES
project. Stream 1: model versions from the Fourth Assessment Report of the Intergovernmental Panel on Climate Change 

(IPCC-AR4); Stream 2: new versions developed within the ENSEMBLES project

Variable Description Pressure levels (hPa) Units Temporal aggregation

Z Geopotential 1000, 850, 700, 500 m2 s–2 Inst. at 00:00 h UTC
T Temperature 850, 700, 500 K Inst. at 00:00 h UTC
U Zonal wind component 850, 700, 500 m s–1 Inst. at 00:00 h UTC
V Meridional wind component 850, 700, 500 m s–1 Inst. at 00:00 h UTC
R Relative humidity 850, 700, 500 % Inst. at 00:00 h UTC
Q Specific humidity 850, 700, 500 kg kg–1 Inst. at 00:00 h UTC
MSLP Mean sea-level pressure Sea level Pa Daily mean value

Table 1. Variables analyzed in the present work. Inst.: instantaneous records
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Since the SD methods are trained with reanalysis data and later applied to 
GCM data, the predictors should at least satisfy that they have “similar” 
distributions for both reanalysis and GCMs. 

•  Tests for distributions (e.g. KS-test) or similarity scores (PDF-score). 
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in present climat e conditions from a downscali ng perspective, taking into account10

the requirements of both statistica l and dynamica l approaches. ECMWF’s ERA-11

Interim reanalysi s is used as reference for an evaluation of circulation, temperature12

and humidity variables on daily timescale , which is based on distributional similar-13

ity scores . To additionally obtain an estimat e of observational uncertainty, ERA-14

Interim’ s deviatio n from the Japanese Meteorologica l Agency JRA-25 reanalysis15

is calculated. Areas with considerable differences between both reanalyse s do not16

allow for a proper assessme nt, since ESM performance is sensitive to the choice of17

reanalysis.18
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the grid-box scale and mapped over a large spatia l domain covering Europe and20
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ferences remain even for the centered/zero-mea n time series . For use in dynamical22

downscali ng studies, performance is specifically assesse d along the latera l bound-23
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Table 1 CMIP5 Earth System Models considered in this study

Model Hor. Resolution Reference

CanESM2 2.8 ⇤ 2.8� Chylek et al (2011)
CNRM-CM5 1.4 ⇤ 1.4� Voldoire et al (2011)
HadGEM2-ES 1.875 ⇤ 1.25� Collins et al (2011)
IPSL-CM5-MR 1.5 ⇤ 1.27� Dufresne et al (submitted)
MIROC-ESM 2.8 ⇤ 2.8� Watanabe et al (2011)
MPI-ESM-LR 1.8 ⇤ 1.8� Raddatz et al (2007); Jungclaus et al (2010)
NorESM1-M 1.5 ⇤ 1.9� Kirkevag et al (2008); Seland et al (2008)

taken into account (except 2m air temperature, T2)
for defining the lateral boundary conditions in the pro-
cess of nesting a Regional Climate Model (RCM) into a
global one. The period under study is 1979-2005 and in
case daily mean values where not already provided by
the original data, they were calculated upon 6-hourly
instantaneous values.

As reference historical data for validation, we con-
sider the European Centre for Medium Range Weather
Forecasts ERA-interim (INTERIM) (Dee et al, 2011)
and the Japanese Meteorological Agency JRA-25 (JRA25)
reanalysis data (Onogi et al, 2007). Due to distinct na-
tive horizontal resolutions (see Table 1), both reanalysis
and ESM-data were regridded to a regular grid of 2.5�

by using bilinear interpolation, which is a common step
in downscaling- and GCM-performance studies.

Table 2 Variables considered in this study.

Code Name Height Unit
Z Geopotential 500hPa m2s�2

T Temperature 2m, 850hPa K
Q Specific humidity 850hPa kg kg�1

U U-wind 850hPa ms�1

V V-wind 850hPa ms�1

SLP Sea-level pressure mean sea-level Pa

3 Methods

The principal measure for evaluating reanalysis uncer-
tainty and ESM-performance is the the mean di↵erence
(bias), as well as the p-value of the two-sided paired t-
test (H0 = bias of the di↵erence series is zero). As the
bias is calculated over a widespread range of climatic
regimes and for the four principal seasons of the year, it
is normalized by the standard deviation of INTERIM,
thereby taking into account that e.g. a cold bias of 1�C
is much more important in the Tropics than in the Mid-
Latitudes.

To additionally assess errors in higher order mo-
ments, we apply the two sample Kolmogorov-Smirnov

test (KS-test) on the anomaly/unbiased data, the latter
being obtained by subtracting the seasonal mean from
each data gridbox. The KS-test is a non-parametric
hypothesis test checking the the null hypothesis (H0)
that two candidate samples (e.g. reanalysis and ESM-
sample) come from the same underlying theoretical dis-
tribution. It is defined by the following statistic:

KS–statistic =
2n
max
i=1

|E(zi)� I(zi)| (1)

where n is the length of the time-series, E and I are the
empirical cumulative frequencies from a given Earth
System Model and the INTERIM reanalysis, respec-
tively, and zi denotes the i-th data value of the sorted
joined sample. This statistic is bounded between zero
and one, with low values indicating distributional sim-
ilarity (see Brands et al, 2012, for a description of this
score and its advantages over other standard alterna-
tives, such as the PDF-score).

Since the daily time series applied in this study are
serially correlated, we calculate their e↵ective sample
size n⇤ before estimating the p-value of the KS-statistic
and bias in order to avoid committing too many type-
one errors (i.e. erroneous rejections of the H0). Under
the assumption that the underlying time-series follow a
first-order autoregressive process, n⇤ is defined as fol-
lows Wilks (2006):

n⇤ = n
1� p1
1 + p1

(2)

where n (n⇤) is the (e↵ective) sample size and p1 is the
lag-1 autocorrelation coe�cient.

The validation is applied on a seasonal basis, i.e.
season specific samples of daily data are underlying the
validation procedure.

Reanalysis uncertainty is assessed by validating the
variables from JRA25 against those from INTERIM. In
case the resulting distributional di↵erences are 1) sig-
nificant (↵ = 0.05) and 2) higher than those obtained
from comparing a given ESM to INTERIM, the cor-
responding geographical area is highlighted, indicating
that reanalysis uncertainty is higher than the model
error and that model ranking is essentially impossible.

CMIP5  
Earth System Models 

Validation of the CMIP5 Earth System Models 3

Table 1 CMIP5 Earth System Models considered in this study

Model Hor. Resolution Reference

CanESM2 2.8 ⇤ 2.8� Chylek et al (2011)
CNRM-CM5 1.4 ⇤ 1.4� Voldoire et al (2011)
HadGEM2-ES 1.875 ⇤ 1.25� Collins et al (2011)
IPSL-CM5-MR 1.5 ⇤ 1.27� Dufresne et al (submitted)
MIROC-ESM 2.8 ⇤ 2.8� Watanabe et al (2011)
MPI-ESM-LR 1.8 ⇤ 1.8� Raddatz et al (2007); Jungclaus et al (2010)
NorESM1-M 1.5 ⇤ 1.9� Kirkevag et al (2008); Seland et al (2008)

taken into account (except 2m air temperature, T2)
for defining the lateral boundary conditions in the pro-
cess of nesting a Regional Climate Model (RCM) into a
global one. The period under study is 1979-2005 and in
case daily mean values where not already provided by
the original data, they were calculated upon 6-hourly
instantaneous values.

As reference historical data for validation, we con-
sider the European Centre for Medium Range Weather
Forecasts ERA-interim (INTERIM) (Dee et al, 2011)
and the Japanese Meteorological Agency JRA-25 (JRA25)
reanalysis data (Onogi et al, 2007). Due to distinct na-
tive horizontal resolutions (see Table 1), both reanalysis
and ESM-data were regridded to a regular grid of 2.5�

by using bilinear interpolation, which is a common step
in downscaling- and GCM-performance studies.

Table 2 Variables considered in this study.

Code Name Height Unit
Z Geopotential 500hPa m2s�2

T Temperature 2m, 850hPa K
Q Specific humidity 850hPa kg kg�1

U U-wind 850hPa ms�1

V V-wind 850hPa ms�1

SLP Sea-level pressure mean sea-level Pa

3 Methods

The principal measure for evaluating reanalysis uncer-
tainty and ESM-performance is the the mean di↵erence
(bias), as well as the p-value of the two-sided paired t-
test (H0 = bias of the di↵erence series is zero). As the
bias is calculated over a widespread range of climatic
regimes and for the four principal seasons of the year, it
is normalized by the standard deviation of INTERIM,
thereby taking into account that e.g. a cold bias of 1�C
is much more important in the Tropics than in the Mid-
Latitudes.

To additionally assess errors in higher order mo-
ments, we apply the two sample Kolmogorov-Smirnov

test (KS-test) on the anomaly/unbiased data, the latter
being obtained by subtracting the seasonal mean from
each data gridbox. The KS-test is a non-parametric
hypothesis test checking the the null hypothesis (H0)
that two candidate samples (e.g. reanalysis and ESM-
sample) come from the same underlying theoretical dis-
tribution. It is defined by the following statistic:

KS–statistic =
2n
max
i=1

|E(zi)� I(zi)| (1)

where n is the length of the time-series, E and I are the
empirical cumulative frequencies from a given Earth
System Model and the INTERIM reanalysis, respec-
tively, and zi denotes the i-th data value of the sorted
joined sample. This statistic is bounded between zero
and one, with low values indicating distributional sim-
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