

Introduction: Global and regional climate change scenarios

José Manuel Gutiérrez

gutierjm@unican.es

Instituto de Física de Cantabria CSIC – Univ. de Cantabria Grupo de Meteorología de Santander

First VALUE training school: "Introduction to Dynamical and Statistical Downscaling". Santander 6-15 November 2012

- Introduction to Global Climate Modeling
 - Multi-model and multi-scenario ensembles

Contenidos

- From AR4 to AR5
- Introduction to Downscaling
 - Dynamical vs Statistical approaches
- Validation of GCMs for Downscaling
 - Distributional similarity measures.

The Intergovernmental Panel on Climate Change (IPCC) was established in **1988** by the United Nations Environment Programme (UNEP) and the WMO to provide the world with a clear scientific view on the current state of knowledge in climate change:

WG1. The Physical Science Basis. WG2. Impacts, Adaptation and Vulnerability. WG3. Mitigation of Climate Change.

IPCC have published four assessment reports (<u>http://www.ipcc.ch</u>), the last one (AR4) in 2007 (the next one, AR5, will be ready in 2013).

Working Group I Report "The Physical Science Basis"

Working Group II Report "Impacts, Adaptation and Vulnerability"

Climate Change:

IPCC (AR4)

Working Group III Report "Mitigation of Climate Change"

Santander Meteorology Group From AR4 to AR5 A multidisciplinary approach for weather & climate PCMDI - Program For Climate Model Diagnosis and Intercomparison PCMDI Home | CAPT | AMIP | SMIP United Visn IPCC Japan Kingdom CMIP5 Coupled Model Intercomparison Pre France approves outline WCRP World Climate Research Programme The Netherlands USA Australia Home CMIP3 CMIP5 Accomplishments Links News Col Governments, CMIP Home \ CMIP5 Home \ Data Access \ Getting Started \ CMIP5 organisations ± nominate experts ome CMIP5 - Data Access - Getting Started ews uide to CMIP5 xperiment Design ± **Bureaux select Authors** Data Access ± CMIP5 Data - Getting Started or Data Providers Getting Started Getting Started Tutorial for Users Seeking CMIP5 Model Output Forcing Data Output Requirements NOTES: Authors Submitting Data Please ude Firefox 7+, Safari 5+ or Chrome 16+ (see Supported Browsers) to access the ESGF P2P Data Node prepare The old gateway http://pcmdi3.llnl.gov/esgcet/ is still active but it is recommended to use new P2P nodes liste FAQs 1st - order below. You may need to register again in the new ESGF P2P system. + More Info DRAFT **CMIP5 Status** 1. Access to data. **CMIP5 Errata** Anyone can browse the CMIP5 model output archive catalogue, but in order to download data you will be requir **CMIP5** Publications register (i.e. open an account) (see step 2 below). Your account will be valid for all data (CMIP5 plus much, much Obs4MIPs Wiki served by the Earth System Grid Federation (ESGF). Because different restrictions are placed on different data Expert served by ESCE you must also enroll in one of the two "CMIP5 groups" and agree to the terms of use establish Contact Review m o (see step 3 below). 2. Obtaining an ESGF account. a. All CMIP5 Model output can be accessed through any one of several portals operated by ESGF. Although nearly ed and in nodes currently exist, the nodes with primary responsibility for CMIP5 are: and socio-economic l i. PCMDI: http://pcmdi9.llnl.gov/ ii. BADC: http://esof-index1.ceda.ac.uk **IPCC review and select** iii. DKRZ: http://esgf-data.dkrz.de by other releva iv. NCI: http://esg2.nci.org.au

The other nodes are listed on the forme page of any of the above sites (in a box at the right of the page). b. Who should receive

Users who are involved at DOMDI for the surgery of abbailting OMID2 subschaftly in able to a

Warming of the climate system is unequivocal, as is now evident from observations of increases in global average air and ocean temperatures, widespread melting of snow and ice and rising global average sea level. (AR4-IPCC, 2007)

Changes in Temperature , Sea Level and Northern Hemisphere Snow Cover

Evidences:

Observation

Femperature Anomaly (°C)

1800 1820 1840 1860 1880 1900 1920 1940

berkeleyearth.org

NASA GISS NOAA HadCBU

2000

Berkeley

1980

Atmosphere + Hydrosphere + Cryosphere + Lithosphere + Biosphere

The Climatic

Sytem

Half the solar radiation is absorbed by the Earth's surface and is latter emitted as infrared radiation which passes through the atmosphere, but most is absorbed back by greenhouse gases (CO₂, CH₄, etc.), with a warming effect.

Greenhouse

Gases

The variations of the Earth's orbit around the Sun determines the climate variations at a geological timescale (alternation between glaciation and interglacial periods).

CO₂ levels varied between 180 and 300 parts per milion during the 400,000 years.

Variability of CO2

concentration

<u>John Tyndall</u> discovered that greenhouse gases block infrared radiation. <u>Arrhenius</u> estimated that doubling the CO_2 concentration, the temperature will increase 5°C.

Numerical modeling: The Atmosphere

The synoptic dymamics (global scale) of the atmosphere is governed by well-known physic laws.

Conservación de energía, masa, momento, vapor de agua, ecuación de estado de gases.

$$\frac{d\boldsymbol{v}}{dt} = -\alpha \boldsymbol{\nabla} p - \boldsymbol{\nabla} \phi + \boldsymbol{F} - 2\boldsymbol{\Omega} \times \boldsymbol{v}$$

$$\frac{\partial \rho}{\partial t} = -\boldsymbol{\nabla} \cdot (\rho \, \boldsymbol{v})$$

$$p \alpha = R T$$

$$Q = C_p \frac{dT}{dt} - \alpha \frac{dp}{dt}$$

$$\frac{\partial \rho q}{\partial t} = -\boldsymbol{\nabla} \cdot (\rho \boldsymbol{v} q) + \rho (E - C)$$

v = (u, v, w), T, p, ρ = 1/ α y q

Towards: Earth-System Models

ECUACIONES DE LOS MODELOS CLIMÁTICOS GLOBALES

Ecuaciones de evolución
de variables de predicciónEcuaciones para resolver
efectos de procesos subrejillaEcuaciones para resolver
procesos de intercambio

Numerical modeling.... Historical period

 $= -\alpha \nabla p - \nabla \phi + F - 2\Omega \times v$

Ecuaciones de conservación y estado

 $= -\boldsymbol{\nabla} \cdot (\rho \, \boldsymbol{v})$

 $Q = C_p \frac{dT}{dt} - \alpha \frac{dp}{dt}$

 $\left(\frac{\partial \rho q}{\partial t}\right) = -\boldsymbol{\nabla} \cdot (\rho \boldsymbol{v} q) + \rho (E - C)$

 $v = (u, v, w), T, p, \rho = 1/\alpha y q$

 $p\alpha = RT$

Santander Meteorology Group

A multidisciplinary approach for weather & climate

260 275 285 292 5 296 Different initial conditions allow testing considered. the internal variability of the model.

According to WMO, the climatology is defined by a 30 years period, suitable to estimate statistics such as the mean, var, trend, etc.

In some cases, <u>20 years</u> or a decade are also

Global Climate Models, GCMs (CCM3)

Santander Meteorology Group

A multidisciplinary approach for weather & climate

www-pcmdi.llnl.gov/ipcc/about-ipcc.php

DEF referencia

JJA referencia

Validation:

Temperature

DEF media modelos

JJA media modelos

www-pcmdi.llnl.gov/ipcc/about-ipcc.php

DEF referencia

JJA referencia

Validation:

Precipitation

DEF media modelos

JJA media modelos

A multidisciplinary approach for weather & climate

Anomalías de la temperatura superficial media global, relativas al promedio de 1880-1920, de los registros instrumentales, comparadas con conjuntos de cuatro simulaciones realizadas con un modelo acoplado océano-atmósfera .

(a) forzamientos solar y volcánico solamente;
(b) antropogénicos, incluyendo gases invernadero, ozono estratosférico y troposférico, y efectos indirectos de aerosoles sulfato; y
(c) todos los forzamientos, tanto naturales como antropogénicos.

PROBLEMS

Attribution

Numerical modeling... Future Projections

Santander Meteorology Group

A multidisciplinary approach for weather & climate

Ecuaciones de conservación y estado

235 255 270 280 290 295 297 299 301 245 ٩K 275 285 292.5 296 298 230 240 250 260 300 302

G

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

Forcings: SRES **Emission Scenarios**

A multidisciplinary approach for weather & climate

http://www.ipcc.ch/pdf/special-reports/spm/sres-en.pdf

A multidisciplinary approach for weather & climate

Family			A1		A2	B1	B2
Scenario group	1990	A1FI	A1B	A1T	A2	B1	B2
Population (billion) 2020 2050 2100	5.3	7.6 (7.4-7.6) 8.7 7.1 (7.0-7.1)	7.4 (7.4-7.6) 8.7 7.1 (7.0-7.1)	7.6 (7.4-7.6) 8.7 7.0	8.2 11.3 15.1	7.6 (7.4-7.6) 8.7 (8.6-8.7) 7.0 (6.9-7.1)	7.6 9.3 10.4
Family		A1			A2	B1	B2
Scenario group	1990	A1FI	A1B	A1T	A2	B1	B2
Final energy intensity (10 ⁶ J/US\$) ^a 2020 2050 2100	16.7	9.4 (8.5-9.4) 6.3 (5.4-6.3) 3.0 (2.6-3.2)	9.4 (8.1-12.0) 5.5 (4.4-7.2) 3.3 (1.6-3.3)	8.7 (7.6-8.7) 4.8 (4.2-4.8) 2.3 (1.8-2.3)	12.1 (9.3-12.4) 9.5 (7.0-9.5) 5.9 (4.4-7.3)	8.8 (6.7-11.6) 4.5 (3.5-6.0) 1.4 (1.4-2.7)	8.5 (8.5-11.8) 6.0 (6.0-8.1) 4.0 (3.7-4.6)
Family			A1		A2	B1	B2
Scenario group	1990	A1FI	A1B	A1T	A2	B1	B2
Carbon dioxide, fossil fuels (GtC/yr) 2020 2050 2100	6.0	11.2 (10.7-14.3) 23.1 (20.6-26.8) 30.3 (27.7-36.8)	12.1 (8.7-14.7) 16.0 (12.7-25.7) 13.1 (12.9-18.4)	10.0 (8.4-10.0) 12.3 (10.8-12.3) 4.3 (4.3-9.1)	11.0 (7.9-11.3) 16.5 (10.5-18.2) 28.9 (17.6-33.4)	10.0 (7.8-13.2) 11.7 (8.5-17.5) 5.2 (3.3-13.2)	9.0 (8.5-11.5) 11.2 (11.2-16.4) 13.8 (9.3-23.1)

SRES Emission

Scenarios

ipcc

Climate Modeling

Numerical

A multidisciplinary approach for weather & climate

Internal variability

Annual change in sfc air temperature change (1986-2000) - (1961-1990)

Max-Planck-Institut für Meteorologie Max Planck Institute for Meteorology

- Introduction to Global Climate Modeling
 - Multi-model and multi-scenario ensembles

Contenidos

- From AR4 to AR5
- Introduction to Downscaling
 - Dynamical vs Statistical approaches
- Validation of GCMs for Downscaling
 - Distributional similarity measures

A multidisciplinary approach for weather & climate

THE WCRP CMIP3 MULTIMODEL

BY GERALD A. MEEHL, CURT COVEY, THOMAS DELWORTH, MOJIB LATIF, BRYANT MCAVANEY, JOHN F. B. MITCHELL, RONALD J. STOUFFER, AND KARL E. TAYLOR

DRTH, SEPTEMBER 2007 BATTS | 1383 AMERICAN METEOROLOGICAL SOCIETY DOI:10.1175/BAMS-88-9-1383 Performance metrics for climate models

GCMs in CMIP3

(IPCC-AR4)

Emission Scenarios A multidisciplinary approach for weather & climate

UNCERTAINTY:

10 Observed 6. A1FI Alfi 9 A1B AlB <u>undrumhum</u> A1T AlT 8 A2 A2 Β1 B1 Global mean warming °C B2 B2 IS92a - IS92a Forcing (Wm⁻²) 6 IS92c IS92e 5 3 2 hunnlu 0 1 -1 0 2000 2000 2100

2100

Scenarios IPCC-AR4 A1B (2007)

Santander Meteorology Group

A multidisciplinary approach for weather & climate

A multidisciplinary approach for weather & climate

[7] SPM.7 represented by colors the value of the multimodel averages and by stippling the areas where at least 90% of the models agreed on the sign of the change. When less than 66% of the models agreed in sign the map was left white, to indicate lack of agreement and therefore lack of any robust information about the direction of future change. 20

10

5

-5

-10

-20

Mapping Model

Agreement

[7] SPM.7 represented by colors the value of the multimodel averages and by stippling the areas where at least 90% of the models agreed on the sign of the change. When less than 66% of the models agreed in sign the map was left white, to indicate lack of agreement and therefore lack of any robust information about the direction of future change.

Mapping Model

Agreement

GEOPHYSICAL RESEARCH LETTERS, VOL. 38, L23701, doi:10.1029/2011GL049863, 2011 Mapping model agreement on future climate projections

Claudia Tebaldi,¹ Julie M. Arblaster,^{2,3} and Reto Knutti⁴

[8] Our method explicitly considers statistical significance in the choice of coloring or not, and stippling or not. Differently from SPM.7, therefore, we distinguish the case where models do not agree in sign but are still within the boundaries of natural variability - in which case we argue that information is available, and we still use colors to represent the multimodel mean – from the case where models do not agree and simulate a significant change – in which case we argue that we truly have conflicting information, originating from the different models different responses to forcings – and we leave the corresponding areas white.

Dealing with multi-model projections

Santander Meteorology Group

A multidisciplinary approach for weather & climate

a) Highest possible DJF temperature occuring with 80% probability (A1B)

b) Highest possible JJA temperature occurring with 80% probability (A1B)

c) Probability that DJF temperature exceeds 2 degrees C (A1B)

FIG. 8. Probabilistic climate change results from 21 AOGCMs, 2080-99 compared to 1980-99, for the AIB scenario, converted to a common 5° lat-lon grid: (a) DJF and (b) JJA values of temperature increase with an 80% chance of occurrence by the end of the twenty-first century. Also shown are contours of probabilities of the occurrence of at least a 2°C warming for (c) DJF and (d) JJA (Furrer et al. 2007a).

- Introduction to Global Climate Modeling
 - Multi-model and multi-scenario ensembles

29

Contenidos

- From AR4 to AR5
- Introduction to Downscaling
 - Dynamical vs Statistical approaches
- Validation of GCMs for Downscaling
 - Distributional similarity measures

Scenarios... From AR4 to AR5

RCP Emission

The new scenarios take alternative futures in global greenhouse gas and aerosol concentrations as their starting point. These RCPs are used:

- by Earth System Models (ESMs): physical and biogeochemical resp.
- by Integrated Assessment Models (IAMs): socio-economic conditions

Four Representative Concentration Pathways (RCPs)

Name	Radiative forcing	Concentration	Pathway	Model providing RCP	Reference
RCP8.5	>8.5 W/m ² in 2100	>1370 CO ₂ -eq in 2100	Rising	MESSAGE	Rao & Riahi (2006), Riahi et al. (2007)
RCP6.0	~6 W/m ² at stabilisation after 2100	~850 CO ₂ -eq (at stabilisation after 2100)	Stabilisation without overshoot	AIM	Fujino et al. (2006), Hijioka et al. (2008)
RCP4.5	~4.5 W/m ² at stabilisation after 2100	~650 CO ₂ -eq (at stabilisation after 2100)	Stabilisation without overshoot	MiniCAM	Smith & Wigley (2006), Clarke et al. (2007)
RCP3.0	Peak at ~3 W/m ² before 2100 and then decline	Peak at ~490 CO ₂ - eq before 2100 and then decline	Peak and decline	IMAGE	van Vuuren et al. (2006, 2007)

RCP Emission

Scenarios

SRES vs. RCP Emission Scenarios

A multidisciplinary approach for weather & climate

CMIP5 Earth System Models

CMIP5 Earth System Models considered in this study

Model	Hor. Resolution	Reference
CanESM2 CNRM-CM5 HadGEM2-ES IPSL-CM5-MR MIROC-ESM MPI-ESM-LR NorESM1-M	$2.8 * 2.8^{\circ}$ $1.4 * 1.4^{\circ}$ $1.875 * 1.25^{\circ}$ $1.5 * 1.27^{\circ}$ $2.8 * 2.8^{\circ}$ $1.8 * 1.8^{\circ}$ $1.5 * 1.9^{\circ}$	Chylek et al (2011) Voldoire et al (2011) Collins et al (2011) Dufresne et al (submitted) Watanabe et al (2011) Raddatz et al (2007); Jungclaus et al (2010) Kirkevag et al (2008); Seland et al (2008)

Table 2Variables considered in this study.

Code	Name	Height	Unit
Ζ	Geopotential	500hPa	$m^2 s^{-2}$
Т	Temperature	2m, 850hPa	K
\mathbf{Q}	Specific humidity	$850 \mathrm{hPa}$	$kgkg^{-1}$
U	U-wind	850 hPa	$m s^{-1}$
V	V-wind	850 hPa	$m s^{-1}$
SLP	Sea-level pressure	mean sea-level	Pa

From AR4 to AR5

Home Search Tools Login

Welcome to this ESGF P2P Node

Welcome to the new CMIP5 distributed archive. Our new ESGF peer-to-peer (P2P) enterprise system <u>gateways</u> will remain active and output from all models will continue to be available until the end of July bugs and provide feedback.

CERTIFICATES

- _____
- ANL Node
- Image: BADC Node Image: BADC Node Image: BADC Node Image: Babeline Image: BADC Node Image: BADC
- I CMCC Node M
- E DKRZ Node S
- <u>DKRZ CMIP5 Node</u>
- IPSL Node S
- MASA-GSFC Node
- MASA-JPL Node M
- MCI Node
- ORNL Node
- PCMDI Node

A multidisciplinary approach for weather & climate

http://pcmdi9.llnl.gov/esgf-web-fe/

1011001*ESGF*

Home Search Tools Account Logout

Current Selections	Earth System Model Search	Temporal Search Geospatial Search
(x) text:Earth System Model	Examples: temperature, "surface temperature", climate AND project:CMIP5 AND variable:hus. To download data: add datasets to your Data Cart, then click on Expand or wget.	<u>Clear search</u> <u>constraints and</u> <u>datacart</u> <u>Search Help</u> <u>Search Controlled</u>
Search Categories	Search All Sites Show All Replicas Show All Versions	Vocabulary
Project	< 1 2 3 5897 5898 > displaying 1 to 10 of 58975 search results	
Institute	Display 10 💠 datasets per page	
Model	Add All Displayed to Datacart Remove All Displayed from Datacart	
SubModel	Results Data Cart	

Instrument

Experiment Family

Experiment

SubExperiment

Time Frequency

project=CMIP5, model=BNU-ESM, College of Global Change and Earth System Science, Beijing Normal University, experiment=AMIP, time_frequency=day, modeling realm=landlce, ensemble=r1i1p1, version=20120504 Data Node: esg.bnu.edu.cn Version: 20120504 Description: BNU-ESM model output prepared for CMIP5 AMIP

Further options: Add To Cart, Model Metadata

Santander Meteore		28811191198198 roup	19811988111981988119189	Earth Syst	em
		ESGF.org		srid Federa	ation
 ◄ ► + ○ ♦ http://esgf.org/ ♦ □ ♦ ○ ♦ ○ ♦ Science Magazine: Sign In Homepage ofI O'Ge 	orman Cluste	r/OpeScienceWiki Is	Lector C Q Goog snow in thline Library Data and ma	e IIII O .gency (EEA) S	
IPCC – Intergovernmen ESGF.org	CM	P5 - Data Access	ESGF_Index – ESGF Wiki	ESGF.org +	
Earth System Grid Feder installer · node-manager · public	RecentChar	ESGF_Wik	ki: Cmip5Status/Cl	MIP5NodeStatus	
mission Earth System Grid I	Edit (Text)	nfo Attachments	More Actions:		
federationnodeAn open source effort prdesignenabling world wide acc	Statu	is of the	CMIP5 nodes		
releases installation The Earth System Grid	Last Upda	ate: Mon Nov 5 17:	36:46 UTC 2012 (UTC) - (Build	8415) - • Download results	
sub-projects deploys and maintains s	Status	Deense time	N - d -		

international effort led by Administration (NASA), and international laborate Centre (DKRZ), the Aus Atmospheric Data Cente acknowledgments

Ter. To

mailing lists

committee

bugs

blog

wiki

- Support current C
- Develop data and
- Enhance and impl development com
- Foster collaboration
- Integrate and inter by NASA, NOAA,
- Create software ir

ESGF P2P is a compon

Status	Response time	Node
~	0.41	http://albedo2.dkrz.de/thredds/catalog.html
~	0.47	http://bcccsm.cma.gov.cn/thredds/catalog.html
~	0.41	http://bmbf-ipcc-ar5.dkrz.de/thredds/catalog.html
~	0.55	http://cmip-dn1.badc.rl.ac.uk/thredds/catalog.html
~	0.42	http://cmip3.dkrz.de/thredds/catalog.html
~	0.40	http://cmip5.fio.org.cn/thredds/catalog.html
~	0.15	http://dapp2p.cccma.ec.gc.ca/thredds/catalog.html
~	0.33	http://dias-esg-nd.tkl.iis.u-tokyo.ac.jp/thredds/catalog.html
8	<timeout></timeout>	http://ec2-23-21-209-87.compute-1.amazonaws.com/thredds/catalog.html
~	1.26	http://esg.bnu.edu.cn/thredds/catalog.html
	0.04	

- Introduction to Global Climate Modeling
 - Multi-model and multi-scenario ensembles

Contenidos

- From AR4 to AR5
- Introduction to Downscaling
 - Dynamical vs Statistical approaches
- Validation of GCMs for Downscaling
 - Distributional similarity measures

Problema: Resolución Inapropiada

Santander Meteorology Group

A multidisciplinary approach for weather & climate

THE WCRP CMIP3 MULTIMODEL DATASET

BY GERALD A. MEEHL, CURT COVEY, THOMAS DELWORTH, MOJIB LATIF, BRYANT MCAVANEY, JOHN F. B. MITCHELL, RONALD J. STOUFFER, AND KARL E. TAYLOR

SEPTEMBER 2007 BAMS | 1383 AMERICAN METEOROLOGICAL SOCIETY DOI:10.1175/BAMS-88-9-1383 Performance metrics for climate models P. J. Gleckler,¹ K. E. Taylor,¹ and C. Doutriaux¹ JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113

A New Era in Climate Change Research

Table 1. Model Identification, Originating Group, and Atmospheric Resolution

BCCR-BCM2.0 Bjerknes Centre for Climate Research (Norway) T63	L31
CGCM3.1(T47) Canadian Centre for Climate Modelling and Analysis (Canada)	L31
CGCM3.1(163) CSIRO Atmospheric Research (Australia) T63	L31 L18
CNRM-CM3Météo-France, Centre National deT42	L45

mm

1000

CNRM-CM3

ECHAM5/MPI-OM	Max Planck Institute for Meteorology (Germany)	T63 L32
CCSM3	National Center for Atmospheric Research (USA)	T85 L26
PCM	Halles Casta for Clinete Dealistics and Decemb	142 L18
UKMO-HadCM3	Hadley Centre for Climate Prediction and Research,	$96 \times 72 L19$
UKMO-HadGEM1	Met Office (UK)	N96 L38

Dynamical Downscaling: Regional Climate Models (RCMs)

globales

Predicciones Escenarios de emisión Model ensemble all SRES SAR TAF **RCM** 1800 1900 2000 2100 **B2** A2 **Downscaling Dinámico:** basado en Modelos Regionales del Clima (RCMs) Registros nistóricos $= f(\mathbf{X}; \boldsymbol{\theta})$ Los parámetros Downscaling de los modelos A2 Estadístico: basado en son ajustados con métodos estadísticos que los datos relacionan las ocurrencias observados y locales con las simulados en simulaciones globales. clima presente. Rejilla interpolada (20 km)

Santander Meteorology Group

A multidisciplinary approach for weather & climate

http://ensembles-eu.metoffice.com

Santander Meteorology Group

A multidisciplinary approach for weather & climate

ENSEMBLES Project (2004-2009)

Develop an ensemble prediction system for climate change and linking the outputs to a range of applications.

- RCM simulations.
- Statistical Downscaling (SD).
- Gridded observations: E-OBS

ENSEMBLES

Climate change and its impacts at seasonal, decadal and centennial timescales

Advanced Review

EU-funded

Project

(2004-2009)

State-of-the-art with regional climate models

Markku Rummukainen*

Present Climate Future 2080 2090 1990 2000 2010 2020 2030 2070 1960 1970 1980 **Observations** E-OBS, 25km day-to-day Correspondence **GCM reanal.** ERA40, 250km **RCMs** ENSEM. 25km Simulation (25km) Observation (25km) Precipitaion Figure 6.5: Climate-change signal (2021-2050 relative to 1961-1990) for annual precipitation total (%) for the multi-model mean of the ENSEMBLES RCMs. Control simulations (20C3M) Scenarios (B1,A1B,A2) GCM scen. AR4 ~250km **RCMs** ENSEM, 25km

Dynamical

Downscaling:

Methodology

A multidisciplinary approach for weather & climate

Variables	Description	Units
tas	2-meter temperature	K
tasmax	Daily maximum 2-m temperature	K
tasmin	Daily minimum 2-m temperature	K
uas	10-meter U-wind	m/s
vas	10-meter V-wind	m/s
WSS	10-meter wind speed	m/s
huss	2-meter specific humidity	Kg/kg
hurs	2-meter relative humidity	%
tdps	2-meter dew point temperature	K
psl	Mean sea level pressure	Pa
pr	Precipitation	Mm
prc	Convective precipitation	Mm
prls	Large-scale precipitation	Mm
evspsbl	Evaporation	Mm
evspsblpot	Potential Evapotranspiration	Mm
rss	Net SW surface radiation	W/m^2
rls	Net LW surface radiation	W/m^2
rst	Top net SW	W/m^2
rsds	Downward SW surface radiation	W/m^2
rlds	Downward LW surface radiation	W/m^2
rsdt	Top downward SW radiation	W/m^2

RCMs provide a large number of physically consistent variables.

However, they exhibit large biases which need to be calibrated for impact studies. This callibration process **assumes stationarity**.

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115, D21117, doi:10.1029/2010JD013936, 2010

Evaluation of the mean and extreme precipitation regimes from the ENSEMBLES regional climate multimodel simulations over Spain

S. Herrera,¹ L. Fita,² J. Fernández,² and J. M. Gutiérrez¹

A multidisciplinary approach for weather & climate

Statistical Downscaling

Statistical Downscaling: Perfect Prog.

- PROBLEM 1: Choosing consistent predictors:
- PROBLEM 2: Stationarity/robustness: SDM SDM

A multidisciplinary approach for weather & climate

Variables	Description	Units
tas	2-meter temperature	K
tasmax	Daily maximum 2-m temperature	K
tasmin	Daily minimum 2-m temperature	K
uas	10-meter U-wind	m/s
vas	10-meter V-wind	m/s
WSS	10-meter wind speed	m/s
huss	2-meter specific humidity	Kg/kg
hurs	2-meter relative humidity	%
tdps	2-meter dew point temperature	K
psl	Mean sea level pressure	Pa
pr	Precipitation	Mm
prc	Convective precipitation	Mm
prls	Large-scale precipitation	Mm
evspsbl	Evaporation	Mm
evspsblpot	Potential Evapotranspiration	Mm
rss	Net SW surface radiation	W/m^2
rls	Net LW surface radiation	W/m^2
rst	Top net SW	W/m^2
rsds	Downward SW surface radiation	W/m^2
rlds	Downward LW surface radiation	W/m^2
rsdt	Top downward SW radiation	W/m^2

RCMs provide a large number of physically consistent variables.

Dynamical vs.

Statistical

Downscaling

However, they exhibit large biases which need to be calibrated for impact studies. This callibration process assumes stationarity.

SDM require historical records of the variables under study.

SDM has some theoretical limitations: non-stationarity?

Freely-available observations in Iberia (Spain02)

Santander Meteorology Group

A multidisciplinary approach for weather & climate

INTERNATIONAL JOURNAL OF CLIMATOLOGY Int. J. Climatol. (2010) Published online in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/joc.2256

Development and analysis of a 50-year high-resolution daily gridded precipitation dataset over Spain (Spain02)

S. Herrera,^a* J. M. Gutiérrez,^a R. Ancell,^b M. R. Pons,^b M. D. Frías^c and J. Fernández^c

^a Instituto de Física de Cantabria, CSIC-University of Cantabria, Avenida de los Castros s/n, Santander, Spain ^b Agencia Estatal de Meteorología (AEMET), Santander, Spain ^c Department of Applied Mathematics and Computer Science, Universidad de Cantabria, Santander, Spain

Precipitación: 2756 Estaciones

Temperatura: 864 Estaciones

Precipitation, min. and max. temperatures

Freely available at: http://www.meteo.unican.es/datasets/spain02

Combined Downscaling Approaches

Statistical vs. Dynamical Downscaling

Geography Compass 5/6 (2011): 275-300, 10.1111/j.1749-8198.2011.00425.x

Climate Scenario Development and Applications for Local/Regional Climate Change Impact Assessments: An Overview for the Non-Climate Scientist

Part I: Scenario Development Using Downscaling Methods

Julie A. Winkler¹*, Galina S. Guentchev², Perdinan¹, Pang-Ning Tan³, Sharon Zhong¹, Malgorzata Liszewska⁴, Zubin Abraham³, Tadeusz Niedźwiedź⁵ and Zbigniew Ustrnul⁶

¹Department of Geography, Michigan State University

²UCAR CLIVAR Postdocs Applying Climate Expertise (PACE) Program

³Department of Computer Science and Engineering, Michigan State University

⁴Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw

⁵Department of Climatology, University of Silesia

⁶Department of Climatology, Jagiellonian University

Part II: Considerations When Using Climate Change Scenarios

Julie A. Winkler¹*, Galina S. Guentchev², Malgorzata Liszewska³, Perdinan¹ and Pang-Ning Tan⁴

¹Department of Geography, Michigan State University

²UCAR CLIVAR Postdocs Applying Climate Expertise (PACE) Program

³Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw

⁴Department of Computer Science and Engineering, Michigan State University

- Introduction to Global Climate Modeling
 - Multi-model and multi-scenario ensembles
 - From AR4 to AR5
- Introduction to Downscaling
 - Dynamical vs Statistical approaches
- Validation of GCMs for Downscaling
 - Distributional similarity measures.

Contenidos

A multidisciplinary approach for weather & climate

THE WCRP CMIP3 MULTIMODEL DATASET

BY GERALD A. MEEHL, CURT COVEY, THOMAS DELWORTH, MOJIB LATIF, BRYANT MCAVANEY, JOHN F. B. MITCHELL, RONALD J. STOUFFER, AND KARL E. TAYLOR

DRTH, SEPTEMBER 2007 BAILS | 1383 AMERICAN METEOROLOGICAL SOCIETY DOI:10.1175/BAMS-88-9-1383 Performance metrics for climate models P. J. Gleckler,¹ K. E. Taylor,¹ and C. Doutriaux¹ JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113

GCMs in CMIP3

(IPCC-AR4)

A New Era in Climate Change Research

Table 1. Model Identification, Originating Group, and Atmospheric Resolution

IPCC I.D.	Center and Location	Atmosphere Resolution
BCCR-BCM2.0	Bjerknes Centre for Climate Research (Norway)	T63 L31
CGCM3.1(T47) CGCM3.1(T63)	Canadian Centre for Climate Modelling and Analysis (Canada)	T47 L31 T63 L31
CSIRO-Mk3.0	CSIRO Atmospheric Research (Australia)	T63 L18
CNRM-CM3	Météo-France, Centre National de Recherches Météorologiques (France)	T42 L45
ECHO-G	Meteorological Institute of the University of Bonn, Meteorological Research Institute of KMA, and Model and Data group (Germany and Korea)	T30 L19
GFDL-CM2.0	US Dept. of Commerce, NOAA	N45 L24
GFDL-CM2.1	Geophysical Fluid Dynamics Laboratory (USA)	N45 L24
GISS-AOM		$90 \times 60 L12$
GISS-EH	NASA/Goddard Institute for Space Studies (USA)	$72 \times 46 L17$
GISS-ER		$72 \times 46 L17$
FGOALS-g1.0	LASG/Institute of Atmospheric Physics (China)	$128 \times 60 \text{ L}26$
INM-CM3.0	Institute for Numerical Mathematics (Russia)	72 × 45 L21
IPSL-CM4	Institut Pierre Simon Laplace (France)	96 × 72 L19
MIROC3.2(medres)	Center for Climate System Research (The University of Tokyo),	T42 L20
MIROC3.2(hires)	National Institute for Environmental Studies, and Frontier Research Center for Global Change (JAMSTEC) (Japan)	T106 L56
MRI-CGCM2.3.2	Meteorological Research Institute (Japan)	T42 L30
ECHAM5/MPI-OM	Max Planck Institute for Meteorology (Germany)	T63 L32
CCSM3 PCM	National Center for Atmospheric Research (USA)	T85 L26 T42 L18
UKMO-HadCM3	Hadley Centre for Climate Prediction and Research,	96 × 72 L19
UKMO-HadGEM1	Met Office (UK)	N96 L38

Validación: Temperature

CMIP3. www-pcmdi.llnl.gov

DEF referencia

JJA referencia

DEF media modelos

JJA media modelos

٩K 285 292.5 296

Validación: Precipitation

CMIP3. www-pcmdi.llnl.gov

DEF referencia

JJA referencia

DEF media modelos

JJA media modelos

Validation: Reanalysis vs. Observations

Brands S, Gutiérrez J, Herrera S, Cofiño A (2012) On the use of reanalysis data for downscaling. J Clim DOI {10.1175/JCLI-D-11-00251.1}

Atmospheric Reanalyses Comparison Table

Name	Source	Time Range	Assimilation	Model Resolution	Model Output Resolution	Publicly Available Dataset Resolution	
Arctic System Reanalysis (ASR)	Polar Met Group	2000-2010	WRF-Var	10-20km	10-30km	10-30km	
ECMWF Interim Reanalysis (ERA Interim)	ECMWF	1989- present	4D-VAR	T255L60	125 km	1.5x1.5 / 0.7x0.7	
ECMWF 40 year Reanalysis (ERA-40)	ECMWF	1958-2001	3D-VAR	T159L60	80 km	2.5x2.5 / 1.125x1.125	
Japanese Reanalysis (JRA-25)	Japan Meteorological Agency	1979-2004	3D-VAR	T106L40	1.125x1.125/2.5x2.5	1.125x1.125/2.5x2.5	
NASA MERRA	NASA	1979-2010	3D-VAR	1/2x1/2 deg	1/2x1/2 deg	1/2x1/2 deg	
NCEP Climate Forecast System Reanalysis (CFSR)	NCEP	1979-?	3D-VAR	T382 L64	.5x.5 and 2.5x2.5	.5x.5 and 2.5x2.5	
NCEP/DOE Reanalysis AMIP-II (R2)	NCEP/DOE	1979- present	3D-VAR	T62 L28	2.5x2.5	2.5x2.5	
NCEP/NCAR Reanalysis I (R1)	NCEP/NCAR	1948- present	3D-VAR	T62 L28	2.5x2.5 and 2x2 gaussian	2.5x2.5 and 2x2 gaussian	
NCEP North American Regional Reanalysis (NARR)	NCEP	1979- present	RDAS	32km	32km	32km	
NOAA-CIRES 20th Century Reanalysis (20CR)	NOAA/ESRL PSD	1871-2008	Ensemble Kalman Filter	T62 L28	2x2	2x2	

Comparing Reanalysis Data

A multidisciplinary approach for weather & climate

FIG. 5. Maps of consistency for the day-to-day sequence of the daily time series of ERA-40 and NCEP–NCAR Z, T, and Q at (top) 500 and (bottom) 850 hPa, as revealed by the Pearson correlation coefficient. Color darkening from yellow to black indicates increasing discipularity.

A multidisciplinary approach for weather & climate

Assessing GCM Data: Reanalysis

Comparing the distributional similarity (at a daily grid-box basis) between ERA40 and NCEP for typical predictors using both the classical Kolmogorov-Smirnov (KS) test and the more recent PDF-score.

PDF-score =
$$\sum_{i=1}^{N} \min\{f(m_i), g(m_i)\}.$$

KS-statistic =
$$\max_{i=1}^{2n} |F(z_i) - G(z_i)|,$$

KS-test was found to be more appropriate. They both provide similar results.

Assessing GCM Data: Reanalysis

A multidisciplinary approach for weather & climate

ERA40 vs. NCEP

0.5 0.4 0.3 0.2 0.1

0.0

FIG. 3. Maps of distributional similarity for the daily time series of ERA-40 and NCEP-NCAR Z, T, and Q at (top) 500 and (bottom) 850 hPa, as revealed by the KS statistic. Color darkening from yellow to black indicates increasing dissimilarity. If the H₀ values of equal distributions cannot be rejected at a test level of 5%, the grid box is whitened and the distributional similarity is assumed to be optimal. Results are presented for both the original and anomaly data.

A multidisciplinary approach for weather & climate

ERA40 vs. NCEP

FIG. 3. Maps of distributional similarity for the daily time series of ERA-40 and NCEP–NCAR Z, T, and Q at (top) 500 and (bottom) 850 hPa, as revealed by the KS statistic. Color darkening from yellow to black indicates increasing dissimilarity. If the H_0 values of equal distributions cannot be rejected at a test level of 5%, the grid box is whitened and the distributional similarity is assumed to be optimal. Results are presented for both the original and anomaly data.

Assessing GCM Data: Santander Meteorology Group CMIP3 + ENSEMBLES A multidisciplinary approach for weather & climate Typical downscaling predictors: **MSLP 2**T CLIMATE RESEARCH Vol. 48: 145-161, 2011 Published August 30 doi: 10.3354/cr00995 Clim Res Contribution to CR Special 27 'Climate change in the NW Iberian Peninsula' OPEN ACCESS U,V Validation of the ENSEMBLES global climate models over southwestern Europe

density functions, from a downscaling perspectiv

S. Brands*, S. Herrera, D. San-Martín, J. M. Gutiérrez

Instituto de Física de Cantabria (CSIC – Universidad de Cantabria), 39005 Santander, Spain

using probability ling perspective	T	40 .			:}		:		; F	- - - -	
M. Gutiérrez	Q, R	35	•		./	2		~			
, 39005 Santander, Spain	500 850mb	30 -:		:	Ş		;		:		
	000,000110	-20		15	-10		-5		0		5
					 _		~			. ~	

60

Table 2. Overview of the global climate models (GCMs) used in the present study, taken from the 2 streams of the ENSEMBLESproject. Stream 1: model versions from the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
(IPCC-AR4); Stream 2: new versions developed within the ENSEMBLES project

GCM name	Acronym	Stream	Institution	Source
BCCR-BCM2	BCM2	1	Bjerknes Centre for Climate Research, Norway	Drange (2006)
CNRM-CM3	CNCM3	1	Centre National de Recherches Météorologiques, France	Royer (2006)
ECHO-G	EGMAM	1	Freie Universität Berlin, Germany	Niehörster (2008)
IPSL-CM4	IPCM4	1	Institut Pierre Simon Laplace, France	Dufresne (2007)
METO-HC-HadGEM	HADGEM	1	Met Office Hadley Centre, UK	Johns (2008)
MPI-ECHAM5	MPEH5	1	Max Planck Institute for Meteorology, Germany	Roeckner (2007)
CNRM-CM33	CNCM33	2	Centre National de Recherches Météorologiques, France	Royer (2008)
ECHO-G2	EGMAM2	2	Freie Universität Berlin, Germany	Huebener & Koerper
				(2008)
IPSL-CM4v2	IPCM4V2	2	Institut Pierre Simon Laplace, France	Dufresne (2009)
METO-HC-HadCM3C	HADCM30	C 2	Met Office Hadley Centre, UK	Johns (2009a)
METO-HC-HadGEM2	HADGEM	2 2	Met Office Hadley Centre, UK	Johns (2009b)
MPI-ECHAM5C	MPEH5C	2	Max Planck Institute for Meteorology, Germany	Roeckner (2008)

Since the SD methods are trained with reanalysis data and later applied to GCM data, the predictors should at least satisfy that they have "similar" distributions for both reanalysis and GCMs.

61

Assessing

GCM Data

Tests for distributions (e.g. KS-test) or similarity scores (PDF-score).

Available from http://www.meteo.unican.es

Assessing

GCM Data:

CMIP5 ESMs

Climate Dynamics manuscript No. (will be inserted by the editor)

- How well do CMIP5 Earth System Models simulate
- ² present climate conditions in Europe and Africa?
- ³ A performance comparison for the downscaling community
- 4 S. Brands · S. Herrera · J. Fernández
- 5 J.M. Gutiérrez

⁶⁷ Received: date / Accepted: date

Abstract This study provides a comprehensive evaluation of seven Earth System Models (ESMs) from the Coupled Model Intercomparison Project Phase 5 in present climate conditions from a downscaling perspective, taking into account the requirements of both statistical and dynamical approaches. ECMWF's ERA-

CMIP5 Earth System Models

CMIP5 Earth System Models considered in this study

Model	Hor. Resolution	Reference
CanESM2 CNRM-CM5 HadGEM2-ES IPSL-CM5-MR MIROC-ESM MPI-ESM-LR NorESM1-M	$2.8 * 2.8^{\circ}$ $1.4 * 1.4^{\circ}$ $1.875 * 1.25^{\circ}$ $1.5 * 1.27^{\circ}$ $2.8 * 2.8^{\circ}$ $1.8 * 1.8^{\circ}$ $1.5 * 1.9^{\circ}$	Chylek et al (2011) Voldoire et al (2011) Collins et al (2011) Dufresne et al (submitted) Watanabe et al (2011) Raddatz et al (2007); Jungclaus et al (2010) Kirkevag et al (2008); Seland et al (2008)

Table 2Variables considered in this study.

Code	Name	Height	Unit
Ζ	Geopotential	500hPa	$m^2 s^{-2}$
Т	Temperature	2m, 850hPa	K
\mathbf{Q}	Specific humidity	$850 \mathrm{hPa}$	$kgkg^{-1}$
U	U-wind	850 hPa	$m s^{-1}$
V	V-wind	850 hPa	$m s^{-1}$
SLP	Sea-level pressure	mean sea-level	Pa

A multidisciplinary approach for weather & climate

For statistical downscaling:

Grid-box scale validation for a large domain covering the western Old World

EuroAfrica

Domains

For dynamical downscaling:

Validation along the lateral boundaries used in:

->EURO-Cordex ->MED-Cordex ->Cordex Africa

Validation

Approach

Bias/std for SLP

in DJF

meridional

pressure gradient

-1 -0.5 0 0.5 1 Mean difference / STD of Interim

JRA25 IPSL-CM5-MR MIROC ESM HadGEM2 ES VS. VS. VS. VS. Interim Interim Interim Interim Variable not available at ESG Portals

> -1.5 -2 -2.5 -3 P-value of the KS-statistic (log scale)

Green boxes indicate lack of data at ESG portals!

KS test (Q850)

Zero-mean data

Median of the absolute bias/std values along the lateral boundaries of 3 CORDEX-domains for SLP in all seasons Euro-CORDEX

