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Abstract 24 

Because of model biases, projections of future climate need to combine model 25 

simulations of recent and future climate with information on observed climate. 26 

Here, ten methods for projecting the distribution of daily mean temperatures are 27 

compared, using six regional climate change simulations for Europe. Cross 28 

validation between the models is used to assess the potential performance of the 29 

methods in projecting future climate. Delta change and bias correction type 30 

methods show similar cross-validation performance, with methods based on the 31 

quantile mapping approach doing best in both groups due to their apparent ability 32 

to reduce the errors in the projected time mean temperature change. However, as 33 

no single method performs best under all circumstances, the optimal approach 34 

might be to use several well-behaving methods in parallel. When applying the 35 

various methods to real-world temperature projection for the late 21st century, the 36 

largest intermethod differences are found in the tails of the temperature 37 

distribution. Although the intermethod variation of the projections is generally 38 

smaller than their intermodel variation, it is not negligible. Therefore, it should be 39 

preferably included in uncertainty analysis of temperature projections, particularly 40 

in applications where the extremes of the distribution are important. 41 

 42 

KEYWORDS: climate change, climate projection, temperature, daily variability, 43 

delta change, bias correction, cross validation, ENSEMBLES, Europe  44 

 45 

46 



 2 

1. Introduction 47 

Despite decades of development, global and regional climate models (GCMs and 48 

RCMs) still show various kinds of biases in the simulation of the present-day 49 

climate (Randall et al. 2007, Christensen et al. 2007, van der Lindell and Mitchell 50 

2009). Therefore, model-simulated future climate as such rarely provides a 51 

plausible projection of the actual future climate. To alleviate the impact of model 52 

biases, construction of climate projections also needs to extract information from 53 

the observed and simulated climates in the recent past. 54 

 55 

As an example, three 30-year (930-day) time series of January daily mean 56 

temperature in Jyväskylä, central Finland, are shown in Fig. 1: the first from 57 

station observations in 1971-2000, the second from an RCM simulation during the 58 

same period, and the third from the same RCM in the end of this century (2069-59 

2098). During the years 1971-2000, the RCM simulation exhibits both a cold bias 60 

and smaller than observed variability, and the distribution of the simulated 61 

temperatures shows less negative skewness than that observed. Considering these 62 

deficiencies, the simulation for 2069-2098 is unlikely to provide a good 63 

description of the climate in this period, even if the simulated changes in mean 64 

temperature and characteristics of variability turned out to be correct.    65 

 66 

Two commonly used approaches to account for model biases are “delta change” 67 

and “bias correction” (Fig. 2). In the former, the projection for the future is 68 

obtained by perturbing an observed time series based on the difference between 69 

the simulated future and baseline climates. In the latter, the projection is built on 70 

the future simulation by the model, after correcting this based on the differences 71 

between the simulated and observed climate during the baseline period.  72 

 73 

If only long-term climatic means are needed, the problem is technically simple. 74 

For example, a projection for the future mean temperature is easily derived as 75 

)()( ocscsop        (1) 76 

where the overline indicates temporal averaging and the four letters stand for 77 

projection (p), baseline observations (o), scenario simulation for the future period 78 
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of interest (s) and control simulation for the baseline period (c). In this case, the 79 

delta change and the bias correction approaches (the first and the second form in 80 

(1), respectively) give identical results. Note, however, that this result is neither 81 

unique nor necessarily optimal. As shown in recent studies (Buser et al. 2009; 82 

Boberg and Christensen 2012) and later in this paper, biases in simulated 83 

variability may also have implications for projections of the time mean climate.  84 

 85 

If characteristics of variability are essential, the situation is more problematic. A 86 

constant delta change or constant bias correction would fail to account for either 87 

the changes or biases in the amplitude, shape of distribution, and temporal 88 

structure of the simulated variability. This can be improved by more sophisticated 89 

projection methods, but not without a potential trade-off. The more precisely a 90 

projection scheme attempts to correct for differences between simulated and 91 

observed climate or to incorporate simulated climate change, the more likely it is 92 

affected by features that are not statistically robust (e.g., random fluctuations in 93 

the tails of the distribution). The potential advantages of more sophisticated 94 

projection methods also need to be put in the context of the model- and scenario-95 

related uncertainty in future climate change (Meehl et al. 2007, Christensen et al. 96 

2007). 97 

 98 

A large array of methods for projecting future climate variability on daily scales 99 

have been developed particularly for precipitation (see Maraun et al. 2010, for a 100 

recent review) but also for temperature (e.g., Engen-Skaugen 2007, Piani et al. 101 

2010, Amengual et al 2012). The question thus arises, which of these different 102 

alternatives should be preferred? Although projection methods can be compared 103 

for their ability to reproduce present-day climate statistics (e.g. Themeßl et al. 104 

2011, Dosiolo and Paruolo 2011), the crucial issue is their performance in future 105 

climate.  106 

 107 

Although future climate is unknown, some inferences on the potential 108 

performance of different methods can be drawn from intermodel cross validation 109 

(Fig. 3). If simulations for both the recent past and the future are available for N 110 

models, any one of these can be left out for verification. In the same way as 111 

projections for the real future climate would be made by combining observations 112 
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with the baseline and future simulations from different climate models, 113 

projections for the future climate in the verifying model can be derived by 114 

replacing observations with the baseline climate in this model. Unlike in the real 115 

world, this projection is verifiable against the actual future climate in the same 116 

model. Repeating this over all choices of the verifying model, statistics can be 117 

gathered that allow comparison between different methods of projection. Such a 118 

technique has already been used in studies focusing on projection of time mean 119 

climate (e.g. Räisänen and Ylhäisi 2011, Bracegirdle and Stephenson 2012, 120 

Maraun 2012), and it is also planned to serve as one of the main tools in the 121 

recently started European Concerted Research Action ES1102 VALUE 122 

(Validating and Integrating Downscaling Methods for Climate Change Research).    123 

   124 

In the present study, which was in part inspired by VALUE, the focus is on the 125 

projection of daily mean temperatures. Ten different projection methods, broadly 126 

similar to those used in earlier studies, are applied to a subset of six RCM 127 

simulations for Europe from the ENSEMBLES (ENSEMBLE-based Predictions 128 

of Climate Changes and their Impacts) project (van der Linden and Mitchell 129 

2009). Two main issues will be studied: 130 

 131 

1. Which of the tested methods show the most promise for projection of future 132 

climate in light of their cross-validation performance? Can a single best 133 

method be identified, or would it be better to use several methods in parallel, 134 

to take into account the uncertainty in this choice (cf. Ho et al. 2012)?   135 

2. How large is the uncertainty associated with the choice of the projection 136 

method compared with the variation of climate change between different 137 

models? 138 

 139 

The model data and observations used are described in Section 2, and the 140 

projection methods are introduced in Section 3. The cross-validation results are 141 

presented in Section 4, whereas Section 5 studies the sensitivity of the projected 142 

future climate to the choice of the projection method. Finally, a synthesis of the 143 

main conclusions is presented in Section 6.  144 

   145 
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2. Data sets 146 

Six RCM simulations from the ENSEMBLES project are used (Table 1), all using 147 

a different RCM and different driving GCM but the same (SRES A1B) emissions 148 

scenario. These data were retrieved from the ENSEMBLES Research Theme 3 149 

web page (ensemblesrt3.dmi.dk/) in a regular 0.25° lon × 0.25° lat grid covering 150 

Europe and northernmost Africa. However, to reduce the computations, only 211 151 

land grid boxes with 2.5° × 2.5° spacing were used in cross validation (Fig. 4a). 152 

Here we mainly use data for a 30-year baseline period (1971-2000) and a 30-year 153 

period in the end of this century (2069-2098), but some results for an earlier 154 

projection period (2001-2030) are also shown.  155 

 156 

For testing real-world temperature projection, a total of 139 station time series 157 

were selected from the blended European Climate Assessment & Data archive 158 

available through the Royal Netherlands Meteorological Institute Climate 159 

Explorer (climexp.knmi.nl/), one per each 2.5° lat × 2.5° lon box where a station 160 

with near-complete time series (at least 99% of valid data in 1971-2000) was 161 

available (Fig. 4b). For each station, simulated time series were chosen from that 162 

one of the nearest nine 0.25° × 0.25° grid boxes which has the largest land 163 

fraction, using for consistency the same land-sea mask (from SMHI-BCM) in all 164 

cases. This procedure was adopted to avoid cases in which observations from a 165 

coastal but nevertheless land-based station would be combined with simulated 166 

time series from a sea-dominated grid box. 167 

3. Projection methods 168 

Ten different methods for constructing projections of future temperature 169 

variability are studied (Table 2). The delta change (M1-M5) and bias correction 170 

methods (M6-M10) are technically symmetric: the same computer subroutines 171 

can be used for both by only switching the order of the three input time series 172 

(observations and the baseline and future simulations) in the argument list. 173 

Therefore, only the delta change methods are described in the following. 174 

 175 

M1 simply adds the time mean temperature change between the baseline and 176 

scenario simulations to each daily value in the observed time series. M2 also takes 177 

http://ensemblesrt3.dmi.dk/
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into account changes in the standard deviation, converting the values in the 178 

observed time series (oi) to projected values (pi) as  179 

c

s

ii
s

s
oocsop )()(       (2) 180 

where ss and sc are the simulated standard deviations during the scenario and 181 

baseline periods. In M3, changes in the sample third-moment skewness are also 182 

included, so that the skewness of the projected time series becomes 183 

)( csop skewskewskewskew      (3) 184 

where the subscripts p, o, s and c refer to the projected, observed, control 185 

simulation and scenario simulation time series, respectively. The condition (3) 186 

could be fulfilled by several different modifications to the data. Here, we follow 187 

the algorithm described by Ballester et al. (2010) in their electronic supplementary 188 

material. 189 

 190 

M4 and M5 use the quantile mapping approach. Cumulative probability 191 

distributions of temperature are first estimated for both the control (Fc) and the 192 

scenario simulations (Fs), and each observed value oi is then converted to  193 

))((1

icsi oFFp               (4) 194 

In implementing (4), two practical issues need to be solved. First, if the 195 

conversion )(1

cs FF  is derived directly from an empirical quantile-quantile plot, it 196 

tends to become noisy near the tails of the distribution (see the crosses in Fig. 5a). 197 

To avoid this, some smoothing is needed. Second, if some of the observed values 198 

fall out of the range in the control simulation, the quantile-quantile relationship 199 

needs to be extrapolated beyond the simulated range.  200 

 201 

M4 and M5 differ in how these practical issues are solved. In M4, the quantiles in 202 

the model simulations are smoothed using a running average, replacing the 203 

quantiles ]1,0[),(1 xxFc with  204 

)1,min(

)0,max(

)1,min(

)0,max(

11 / )()(
~

Dx

Dx

Dx

Dx

cc dxdxxFxF       (5) 205 
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and similarly for )(1 xFs . Here we use D = 0.05, which was found to be close to 206 

optimal in terms of the cross-validation statistics. This smoothed quantile-quantile 207 

relationship is illustrated by the bold red line in Fig. 5a. A disadvantage of the 208 

smoothing is that it narrows the range of the data; for example 1~
cF (0) equals the 209 

mean of the lowest 5% of the temperatures in the control simulation. We 210 

extrapolate towards low and high values assuming that the difference 1~
sF –  211 

1~
cF remains constant for x < 0 and x > 1 (dashed red lines in Fig. 5a).   212 

 213 

In M5, simple linear regression is used to map 
1

cF on 
1

sF (blue line in Fig. 5a). 214 

This coarse-grained implementation of quantile mapping is used to study whether 215 

the more detailed treatment in M4 has additional value. 216 

 217 

The projected scenario period (2069-2098) time series for the case introduced in 218 

Fig. 1 are shown in the left part of Fig. 6 (also note the statistics included in the 219 

figure panels). They illustrate the following key features: 220 

 221 

1. In the delta change methods (M1-M5), the structure of the projection time 222 

series follows the observations, in the bias correction methods (M6-M10) 223 

the simulation for the scenario period. 224 

2. The projected time mean temperature is the same for all of M1-M3 and 225 

M6-M8, but not for the quantile mapping methods M4-M5 and M9-M10. 226 

The causes of this difference will be discussed later in this section. 227 

3. M2-M3 and M7-M8 all produce the same standard deviation of 228 

temperatures. 229 

4. M3 and M8 additionally yield the same skewness of the distribution. 230 

5. The skewness produced by M1-M2 and M5 (-0.9) is the same as in the 231 

observed time series in Fig. 1: none of these methods modifies the shape 232 

of the temperature distribution aside from its mean and standard deviation. 233 

Similarly, the projections based on M6-M7 and M10 have the same 234 

skewness (-0.5) as the RCM simulation for 2069-2098 in Fig. 1. 235 

6.  The extremes of the temperature distribution are particularly sensitive to 236 

the choice of the method. The maximum of the projected time series varies 237 
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from 5.5°C to 11.6°C, the minimum from -36.8°C to -23.2°C. For M8, the 238 

minimum is actually lower than that observed in 1971-2000 (-36.1°C). 239 

 240 

As demonstrated by the quantile representation in the right part of Fig. 6, the 241 

selection of the method is not the only uncertainty in the projection. The choice of 242 

the RCM simulation also matters, although the size of the inter-RCM variation 243 

depends on the projection method used. We will study the relative roles of inter-244 

method and inter-RCM uncertainty in more depth in Section 5. 245 

 246 

M4-M5 give in this case a slightly lower mean temperature than the other delta 247 

change methods, which retain the change in mean temperature exactly as 248 

simulated by the model. This is explained by the cold bias in the simulation in 249 

1971-2000 together with the decrease in variability occurring in 2069-2098 (Figs. 250 

1 and 5a). Because the observed temperatures in 1971-2000 mostly fall in the 251 

upper part of the simulated distribution, where the quantile-quantile comparison 252 

indicates a smaller difference between 1971-2000 and 2069-2098, the mean 253 

temperature change as weighted by the distribution of observations becomes 254 

smaller than that directly simulated by the model. Conversely, M9-M10 indicate a 255 

larger increase in the mean temperature than the other methods. This is due to the 256 

underestimate in variability in the simulation for 1971-2000, which in bias 257 

correction type quantile mapping implies that a larger correction should be added 258 

to higher temperatures (Fig. 5b). As the simulated temperature distribution shifts 259 

upward from 1971-2000 to 2069-2098, the average correction in the latter period 260 

becomes larger than that in the former, thus amplifying the projected change in 261 

time mean temperature. Although the details of these results are case specific, the 262 

ability of quantile mapping to modify the time mean temperature change 263 

represents a generic difference from the other six methods. 264 

 265 

In Figs. 5-6, we used (for simplicity of interpretation) only January data when 266 

estimating the changes (M1-M5) and biases (M6-M10) of the simulated January 267 

temperature distribution. This is not necessarily optimal, because the resulting 268 

relatively small sample size may introduce substantial noise. The noise can be 269 

reduced by using a wider time window in the estimation of climate changes and 270 

model biases, although potentially at the cost of some systematic error. In Section 271 
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4 below, we test three choices of the window length: one, two and three months. 272 

For the two-month window, for example, data from the second half of December 273 

to the first half of February are used in addition to January data when estimating 274 

the changes in January in M1-M5 and biases in M6-M10. 275 

4. Cross validation 276 

Should all of the ten methods be regarded as equally plausible, or are some of 277 

them more likely to give useful temperature projections than others? Here, we 278 

study this using cross validation between the six model simulations, as shown 279 

schematically in Fig. 3. One deterministic and two probabilistic statistics are 280 

computed, all based on a comparison between the quantiles of the projected and 281 

verifying temperature distributions ( )(xTproj  and )(xTver , x = 0…100%) in a given 282 

month and location. The mean square error is 283 

])[( 2

verproj TTAMSE       (6) 284 

where <  > denotes the ensemble mean of the five (six minus verifying model) 285 

individual projections and A indicates averaging over the whole distribution from 286 

0 to 100%, the 12 months, the 211 land grid boxes (weighted with the cosine of 287 

latitude), and the six choices of the verifying model. For calculating the 288 

continuous ranked probability score 289 

 ]))(1()([ 22

proj

T

projproj

T

proj dTTFdTTFACRPS

ver

ver

  (7) 290 

we first form, separately for each quantile of temperature, a probabilistic forecast 291 

for Tver from the discrete cumulative distribution F(Tproj) of the five Tproj values 292 

(cf. Räisänen and Palmer 2001). Our third score, OutOfRange, records the 293 

frequency of cases in which Tver is below the lowest or above the highest of the 294 

five Tproj values. Unlike MSE and CRPS, OutOfRange is not a proper validation 295 

score in the sense that a lower value would always indicate a better forecast. By 296 

inflating the forecast distribution sufficiently, one could ensure OutOfRange = 0, 297 

while simultaneously making the forecast useless. A more useful interpretation is 298 

as follows. If Tver and the five Tproj values are independent samples from the same 299 

statistical population (as they ideally should), then the probability that Tproj is the 300 

lowest or highest of these six values is 1/3. If OutOfRange exceeds this value, this 301 
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indicates that the forecast obtained from the five Tproj values is underdispersive, 302 

thus underestimating the uncertainty in Tver. Conversely, OutOfRange < 1/3 would 303 

indicate an overdispersive forecast.  304 

 305 

A summary of the cross-validation statistics is given in Fig. 7. Focusing first on 306 

the statistics for the projection period 2069-2098 (using 1971-2000 as the 307 

baseline), we can note the following: 308 

 309 

1. MSE and CRPS are relatively insensitive to the number of months used in 310 

estimating the changes (M1-M5) or the model biases (M6-M10). 311 

However, in nearly all cases, two-month aggregation of data performs 312 

better than the use of a single month, although some exceptions are found 313 

for individual verifying models particularly for the delta change methods 314 

(not shown). Differences between two and three months are unsystematic 315 

even when considering the six-model mean statistics shown in Fig. 7.   316 

2. MSE and CRPS give a similar picture of the relative performance of the 317 

ten methods (although the differences in MSE are larger). The two 318 

simplest methods, M1 (constant change over the whole distribution) and 319 

M6 (constant bias correction for the whole distribution) perform less well 320 

than the others. The inclusion of the standard deviation in M2 and M7 321 

gives a clear improvement, but there is little additional change in the 322 

statistics when also modifying the skewness (M3 and M8). Methods based 323 

on quantile mapping perform best within both the delta change group 324 

(M4-M5) and the bias correction group (M9-M10). M9 has both the 325 

lowest MSE and CRPS of the ten methods, although the difference from 326 

M10 is small.    327 

3.  OutOfRange is very close to the “desired” value of 1/3 (33.3%) for all of 328 

the bias correction methods. By contrast, the delta change methods tend to 329 

provide underdispersive projections, so that the verification falls more 330 

often out of the range of the five projections than it ideally should.  This is 331 

understandable. Because the delta change projections from the five 332 

forecast models all modify the same underlying time series (the 1971-333 

2000 time series in the verifying model), their differences do not fully 334 
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cover the effects of internal variability. This underdispersion becomes 335 

more pronounced for longer time windows in estimating the change.  336 

 337 

The bottom row of Fig. 7 shows the corresponding verification statistics for the 338 

period 2001-2030, when climate changes from 1971-2000 are much smaller than 339 

in 2069-2098. The absolute intermodel differences in change are also smaller, 340 

making both MSE and CRPS lower during this period. Unlike in 2069-2098, M1 341 

shows in 2001-2030 nearly identical performance with the other delta change 342 

methods. At this time, changes in the width and shape of the temperature 343 

distribution still have a very low signal-to-noise ratio. Their inclusion in the 344 

projection has, therefore, little impact on the cross-validation performance. Most 345 

of the bias correction methods are also close in performance to the delta change 346 

methods at this time, M9 being again the best in the whole group. However, M6 347 

with its unrealistic assumption that model biases are constant throughout the 348 

distribution performs substantially worse than the other methods.    349 

  350 

The MSE calculated for the whole temperature distribution can be written as the 351 

sum of two components: one arising from the error in the time mean temperature, 352 

and the other from errors in the differences between the individual quantiles and 353 

the mean value. The latter component (denoted as debiased MSE in Fig. 7) is 354 

typically much smaller than the former, particularly in 2069-2098. Therefore, 355 

most of the MSE and some of the intermethod differences in MSE actually reflect 356 

errors in the projected time mean temperature, rather than those in the width and 357 

shape of the distribution. In particular, the best performance of the quantile 358 

mapping methods (especially M9 and M10) in 2069-2098 results from the best 359 

projections of the time mean temperature. On the other hand, relatively large 360 

errors in the shape and the width of the distribution do distinguish the worst 361 

methods (M1 and M6 in 2069-2098 and M6 in 2001-2030) from the others. 362 

 363 

In constructing Fig. 7, the same weight was given to all parts of the temperature 364 

distribution. Yet, for some applications the projection accuracy near the upper 365 

and/or lower tails of the distribution might be unproportionally important. To 366 

illustrate how the relative performance of the methods varies across the 367 

distribution, their MSE ranks in 2069-2098 are shown in Fig. 8 separately for all 368 
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percentiles of temperature (similar analysis for CRPS gives very similar results). 369 

For this and all the later figures in this paper, the two-month time window is used. 370 

 371 

For most of the distribution, the ranking of the methods is broadly consistent with 372 

Fig. 7. As an exception, the simple constant bias correction M6 actually has the 373 

lowest MSE at 16-34%, although it performs very poorly in the upper part of the 374 

distribution. Otherwise, M9 and M10 with the lowest overall MSEs dominate the 375 

top rank from the extreme lower tail up to 98%. However, in the extreme high 376 

end, the performance of M9 and particularly M10 deteriorates. Thus, these 377 

projection methods might not be optimal for applications that are particularly 378 

sensitive to extremely high temperatures. Considering how M9 and M10 function, 379 

this deterioration is not surprising. Both methods attempt to estimate the 380 

temperature dependence of model bias from comparison between the observed 381 

and simulated distributions during the baseline period (Fig. 5b). However, the 382 

highest temperatures simulated in the late 21st century by far exceed those in the 383 

baseline period. This results in substantial extrapolation uncertainty in the bias 384 

correction, which probably explains the deteriorating performance of M9 and 385 

M10 in the upper end of the distribution.  386 

 387 

The intermethod variation of cross-validation statistics also depends on the 388 

location, month of the year, and the verifying model. We do not discuss the details 389 

of this variation here, but emphasize the general implication: a method that is best 390 

in an average sense will not be the best in all individual cases. This indicates that 391 

the choice between different projection methods represents a genuine uncertainty 392 

that cannot be fully eliminated by selecting a single best method.  393 

 394 

Given the uncertainty in the projection methods, might it not be better to use 395 

several methods simultaneously instead of just one? To test this suggestion, four 396 

combinations of methods were chosen. B2, B4 and B8 include the best two (M9 397 

and M10), four (M4-M5 and M9-M10) and eight methods (M2-M5 and M7-M10) 398 

in terms of the overall MSE and CRPS statistics for 2069-2098, while A10 399 

includes all ten methods. In each case, the same weight was given to all of the 400 

methods included. Thus, for example, the best estimate projection from B8 401 

becomes the mean of the multi-model means from all methods exluding M1 and 402 
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M6, while the corresponding probabilistic projection is formed by averaging the 403 

cumulative distribution functions from the same eight methods. 404 

 405 

Figure 9 compares the cross-validation performance of these method 406 

combinations in 2069-2098 with that for the best four individual methods. When 407 

the number of methods combined increases, the range of projections included in 408 

the combination widens. Consequently, OutOfRange is already smaller for B2 409 

than for the individual methods, and it decreases further when more methods are 410 

added (Fig. 9c). Still, as averaged over the whole temperature distribution, 15% of 411 

verification cases falling outside the predicted range remain even for A10.  412 

 413 

As disussed above, decreases in OutOfRange do not necessarily imply a better 414 

projection. Indeed, MSE and CRPS (Figs. 9a,b) tell a partly different story. While 415 

CRPS averaged over the whole distribution is lower for all the four tested 416 

combinations than any individual method, it is at minimum for B4 that only 417 

includes the best four methods. Similarly, the B4 combination also has the lowest 418 

MSE. Its superiority over the other tested methods and combinations applies to 419 

most parts of the distribution (Figs. 9d,e). In particular, the probabilistic CPRS 420 

measure identifies B4 as the best approach with the only exception of the absolute 421 

extremes (0 and 100%). In the period 2001-2030 as well, CRPS and MSE 422 

averaged over the whole distribution are the lowest for B4 (not shown).  423 

 424 

These findings suggest that temperature projections might be best derived by 425 

combining the information from the two delta change (M4-M5) and the two bias 426 

correction type quantile mapping methods (M9-M10). However, future research 427 

should test whether this conclusion remains valid for other model ensembles and 428 

other parts of the world. 429 

5. Projections for the future 430 

Here, we apply our methdology to real-world temperature projection for the set of 431 

139 stations shown in Fig. 4b. Although the methodology provides projections for 432 

temperature in absolute units (cf. Fig. 6), we mostly show the results here as 433 

changes from the observed baseline distribution in 1971-2000.  434 
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5.1 Intermethod differences in projections 435 

Intermethod differences in the projections are studied in Figs. 10 and 11. The first 436 

three rows of Fig. 10 summarize the projected six-RCM mean changes in the 1st, 437 

10th, 50th, 90th and 99th percentiles of temperature, averaging the month- and 438 

station-specific values over the standard three-month seasons and over northern 439 

(48 stations north of 57.5°N), central (44 stations at 47.5°N-57.5°N) and southern 440 

Europe (47 stations south of 47.5°N). M1, which applies the same delta change in 441 

all parts of the distribution, provides a reference against which to compare the 442 

projections from the other methods. In line with earlier GCM and RCM studies 443 

(Räisänen et al. 2004, Kharin et al. 2007, Kjellström et al. 2007, Nikulin et al. 444 

2011), the ENSEMBLES RCMs simulate seasonally varying changes in 445 

variability that are reflected in all of M2-M10. In winter and to some extent in 446 

autumn and spring, the simulated variability decreases particularly in northern 447 

Europe, resulting in larger changes in the lower than the upper end of the 448 

distribution. In summer, the reverse happens in central and southern Europe, with 449 

larger increases in the highest than in the lowest temperatures. 450 

 451 

Differences also occur between the projections from M2-M10. For example, the 452 

contrast between the changes in the lowest and highest winter temperatures in 453 

northern Europe is less pronounced for M4 than the rest of M2-M10. This is at 454 

least partly due to the running averaging of the quantile-quantile relationship in 455 

M4, which contracts the range over which changes in variability can be taken into 456 

account (Fig. 5a). More strikingly, the apparent increase in the highest (lowest) 457 

summer temperatures in central and southern Europe is larger (smaller) for M6 458 

than for the other methods. This is an artifact caused by the tendency of many of 459 

the models to overestimate present-day temperature variability in summer, a bias 460 

not corrected in M6.   461 

 462 

The differences between the methods are smaller in the middle of the distribution 463 

than in the tails. However, M9 and M10 indicate a markedly smaller increase in 464 

median (50%) temperatures in central and southern Europe in summer than any 465 

other method. In southern Europe, M10 actually projects less warming than the 466 

other methods (excluding M6 near the lower tail) throughout the distribution. The 467 

explanation is analogous to the case shown in Figs. 5b and 6, but with the sign of 468 

the difference reversed. Because the simulated variability in southern and central 469 
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Europe in summer is too large, that is, the temperature bias increases with 470 

increasing temperature, a more negative bias correction is applied in M9 and M10 471 

to the higher temperatures simulated in the future. This reduces the projected 472 

warming, just as recently shown for a similar bias correction method by Boberg 473 

and Christensen (2012). The results in Fig. 7 suggest that this feature may very 474 

well be an improvement: it was precisely the ability of M9 and M10 to modify the 475 

time mean temperature change that reduced the MSEs of these methods (and to 476 

some extent M4 and M5) in cross validation. 477 

 478 

Another question of interest is how the choice of the method affects the 479 

intermodel variation of the projections (bottom row of Fig. 10). For M1, the 480 

intermodel standard deviation as calculated over all 139 stations is relatively small 481 

(1.1-1.2°C depending on season), being the same for all parts of the distribution. 482 

For the other methods, the standard deviation near the tails of the distribution is in 483 

most cases larger, particularly in the lower tail in winter and in the upper tail in 484 

summer. The intermodel variation tends to be the largest for M6, being amplified 485 

by uncorrected biases in variability. The standard deviation is in most cases 486 

smaller for the delta change than for the bias correction methods, because the 487 

former do not fully represent the uncertainty associated with internal variability 488 

(see the discussion of OutOfRange in Section 4). Note, however, the typically 489 

smaller standard deviations for M9-M10 than for the other bias correction 490 

methods. 491 

 492 

To further compare the ten methods, pairwise intermethod root-mean-square (rms) 493 

differences in the six-RCM mean temperature projections are shown in Fig. 11 494 

(see the caption for further details).  Method pairs 2-3, 4-5, 7-8, and 9-10 all stand 495 

out as closely related, with very small differences in most of the distribution. In 496 

particular, the differences between M2 and M3 and between M7 and M8 are 497 

largely negligible, except for the extreme tails where changes and bias corrections 498 

of skewness have more substantial effects. Furthermore, while the M9-M10 499 

differences are small in the lower and central parts of the distribution, they grow 500 

relatively large in the upper tail, reflecting the difficulty in the extrapolation of the 501 

bias correction beyond the range in the baseline period. As a whole, M6 and M1 502 

are the methods furthest away from the others, but the tendency of M9 and M10 to 503 
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differ relatively strongly from the other methods in the middle of the distribution 504 

also stands out.  505 

5.2 Analysis of variance 506 

In addition to the choice among the various projection methods, the projections 507 

also depend on the model simulation used. To assess the relative importance of 508 

these sources of uncertainty, fixed-effect analysis of variance was applied. The 509 

variance within each data set, consisting of all model- and method-specific 510 

projections for a given quantile of the temperature distribution at a given station 511 

and month, was decomposed as  512 

intmetmodtot VVVV       (8) 513 

where Vmod is the contribution of model differences (variation of multi-method 514 

mean projections across models), Vmet that of method differences (variation of 515 

multi-model mean projections across methods), and Vint that of model-method 516 

interaction (method-dependence of intermodel differences, or equivalently model-517 

dependence of intermethod differences). The computation of these terms is 518 

analogous to Eqs. (1)-(4) of Déqué et al. (2012). We stress that this decomposition 519 

does not aim to estimate the variances that would be observed within an infinite 520 

population of independent models and methods, but is rather used to diagnose the 521 

sources of variability within our specific set of (possibly non-independent) models 522 

and (certaintly non-independent) methods. Furthermore, model simulations of 523 

climate always include unforced natural variability (Räisänen 2001, Yip et al. 524 

2011). Some fraction of Vmod reflects this unforced variability rather than genuine 525 

intermodel differences in response to forcing, and to a lesser extent the unforced 526 

variability may also affect the other variance components. 527 

 528 

As an illustration, the model- and method-dependence of projections for the 1st 529 

and 50th percentiles of January daily temperature in Jyväskylä, Finland in 2069-530 

2098 is shown in Fig. 12. The projections for the 1st percentile vary widely 531 

between the models, but even more so between the methods. With all six models 532 

and all ten methods included, Vtot = 11.35 (°C)
2
, of which 77% is attributed to 533 

method differences and only 6% to model differences, model-method interaction 534 

taking the remaining 17%. In particular, M1 gives systematically lower 535 

projections than the other methods, whereas the highest projections are generally 536 
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obtained from M6. However, both of these methods are suspect due to their poor 537 

performance in cross validation. Indeed, the results in Fig. 9 suggest that it might 538 

be preferable to only retain the methods 4, 5, 9 and 10 included in the B4 539 

combination. Doing this reduces the total variance by about 40%, but does not 540 

affect the relative shares of the different components in this particular case. 541 

 542 

The projections for the 50th percentile are much less method-dependent (Fig. 543 

12b). Almost 70% of the variance is attributed to model differences when all ten 544 

methods are included, and this increases to 88% when only the best four methods 545 

are retained. Conversely, the contribution of method differences is reduced from 546 

15% in the fomer case to nearly zero in the latter.  547 

 548 

Averaging over the 139 stations and 12 months confirms that intermodel 549 

differences strongly dominate the variance in the central parts of the temperature 550 

distribution (Fig. 13).  Intermethod differences and model-method interaction both 551 

grow more important towards the tails of the distribution but do not become as 552 

dominant as in the case shown in Fig. 12a, especially not when only the best four 553 

methods are included. Averaging the variances over the whole distribution, Vmod,   554 

Vint and Vmet contribute 73%, 13% and 14% in the 10-method case and 76%, 12% 555 

and 13% in the 4-method case, respectively. Therefore, the uncertainty associated 556 

with the choice of the projection method may be a secondary issue for many 557 

applications, although it clearly should not be neglected when and where the tails 558 

of the temperature distribution are particularly important. A similar conclusion – 559 

that uncertainty in bias correction is generally smaller than climate modeling 560 

uncertainty – was obtained by Chen et al. (2011), although their hydrological 561 

study addressed the bias correction uncertainty due to the choice of the baseline 562 

period rather than due to the choice of the method. 563 

6. Conclusions 564 

Projection of future climate cannot be generally based on model simulations alone 565 

but also requires information on the observed climate. This projection problem is 566 

often considered simple when only long-term climatic means are required, but it 567 

becomes more complicated when temporal variability is important. Here, we have 568 

focused on what is probably one of the easiest aspects of daily-scale variability for 569 
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both climate models and in terms of its statistical properties, distributions of daily 570 

mean temperature in a changing climate. We first studied the relative strengths 571 

and weaknesses of ten projection methods using cross validation among six RCM 572 

simulations for Europe, all made with different RCMs and different driving 573 

GCMs. The main findings from these tests include the following: 574 

 575 

1. Delta change and bias correction type methods showed similar overall 576 

performance in cross validation of late 21
st
 century (2069-2098) temperature 577 

distributions. Within both groups, quantile mapping approaches performed 578 

best, due to their smallest errors in the projected time mean temperature. The 579 

simplest approaches assuming constant change or constant bias throughout the 580 

distribution were the worst, having larger errors in the distribution of 581 

temperature around the mean value than the other methods. In projections for 582 

early 21
st
 century (2001-2030), the intermethod differences in verification 583 

statistics were smaller, except for the poor performance of the constant-bias 584 

bias correction method.  585 

2. The performance of different projection methods may vary across the 586 

temperature distribution. In particular, quantile mapping type bias correction 587 

methods were found to be less reliable in the extreme upper tail than in the 588 

other parts of the distribution. 589 

3. No single method performs best under all circumstances. Thus, to some 590 

extent, the choice of the projection method represents an uncertainty 591 

analogous to the choice of the climate model used for the projection. A natural 592 

way to take this uncertainty into account is to consider a few different but 593 

well-performing projection methods instead of just one. In our cross-594 

validation exercise, the combination of the two delta change and two bias 595 

correction quantile mapping methods generally outperformed each individual 596 

method.  597 

 598 

Second, we assessed the sensitivity of the resulting 21
st
 century temperature 599 

projections to the choice of the method, to find that 600 

 601 

1. The choice of the projection method has typically a larger impact in the tails 602 

of the temperature distribution than in the central parts. However, the latter 603 
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may also be affected. In particular, our quantile mapping type bias correction 604 

methods suggest a smaller warming in southern and central Europe in summer 605 

than would be inferred directly from the model simulations. This supports the 606 

recent findings of Boberg and Christensen (2012), in particular as these 607 

methods performed well in cross validation. 608 

2. The uncertainty associated with the choice of the model simulation generally 609 

exceeds that due to the choice of the projection method. However, the relative 610 

importance of the method uncertainty increases towards the tails of the 611 

distribution, indicating that this uncertainty should also be considered at least 612 

in applications where extremely low or high temperatures are important.   613 

 614 

Our study is based on only six RCM simulations and it only covers the European 615 

area. Its conclusions, particularly regarding the relative performance of different 616 

projection methods, should therefore be verified with other data sets. New 617 

opportunities for this will be provided by the CORDEX initiative (A COordinated 618 

Regional climate Downscaling EXperiment, cordex.dmi.dk/), and to some extent 619 

also by the GCM simulations conducted in the fifth phase of the Coupled Model 620 

Intercomparison Project (Taylor et al. 2011).  621 

 622 

We also stress that the methods studied here were only designed for, and tested 623 

for their fidelity in, changing or correcting the local frequency distribution of 624 

daily mean temperatures. Issues that we have not addressed include the temporal 625 

(Haerter et al. 2011) and spatial autocorrelation structure (Huth 2002), as well as 626 

the correlation of temperature with other variables such as precipitation (Engen-627 

Skaugen 2007).  628 
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  744 

Tables 745 

Table 1 The RCM simulations used in this study 746 

Driving GCM RCM  Institution Shorthand  

ARPEGE ALADIN CNRM CNRM-A 

HadCM3Q0 CLM ETHZ ETHZ-H0 

HadCM3Q3 HadRM3Q3  Met Office METO-H3 

HadCM3Q16 HadRM3Q16 Met Office METO-H16 

ECHAM5-r3 REMO MPI MPI-E5 

BCM RCA3 SMHI SMHI-BCM 

The first column indicates the driving global climate model, the second the regional 747 

climate model and the third the institution that conducted the simulations, using model 748 

and institution acronyms that follow the ENSEMBLES Research Theme 3 web page 749 

(http://ensemblesrt3.dmi.dk/). The last column gives the shorthand notations used in this 750 

article  751 

  752 

 753 

 754 

755 

http://ensemblesrt3.dmi.dk/
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Table 2. The projection methods used in this study 756 

M1 Delta change: mean  

M2 Delta change: mean + standard deviation  

M3 Delta change: mean + standard deviation + skewness 

M4 Delta change: quantile mapping using smoothing 

M5 Delta change: quantile mapping using linear regression 

M6 Bias correction: mean  

M7 Bias correction: mean + standard deviation  

M8 Bias correction: mean + standard deviation + skewness 

M9 Bias correction: quantile mapping using smoothing 

M10 Bias correction: quantile mapping using linear regression 

 757 

 758 

 759 

 760 

 761 

 762 

 763 

 764 

765 
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Figures 766 

 767 

Fig. 1  30-year time series of January daily mean temperature in Jyväskylä, Finland 768 

(62.4°N, 25.7°E), as observed in 1971-2000 (top), in the ETHZ-H0 (see Table 1) RCM 769 

simulation during the same period (middle), and in the same RCM simulation in 2069-770 

2098 (bottom)  771 

 772 
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 773 

Fig. 2 A schematic illustration of delta change and bias correction methods 774 

 775 

Fig. 3 Principle of cross validation, as used in this study 776 
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777 

Fig. 4 Locations of (a) the 211 grid boxes used in cross validation in Section 4, and (b) 778 

the 139 weather stations used in real-world temperature projection in Section 5. The 779 

latitudes 47.5°N and 57.5°N used for the division in Fig. 10 are also indicated in (b) 780 

 781 

Fig. 5 An illustration of quantile mapping methods for the case depicted in Figs. 1 and 6.  782 

In (a), the crosses show the quantile-quantile plot obtained directly from the simulations 783 

for 1971-2000 and 2069-2098, the red line gives the smoothed curve used in M4 and its 784 

extrapolation,  and the  blue line depicts the linear regression used in M5.  Using M4, an 785 

observed temperature of -10.0°C would be converted to -4.2°C in the projection for 2069-786 

2098. (b) is the same for the comparison of the simulation and observations in 1971-787 

2000, as used in M9 and M10. In M9, a temperature of -10.0°C in the scenario period 788 

simulation would be converted to -5.9°C in the projection 789 
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790 

Fig. 6 (left) Projected 30-year (2069-2098) time series of January daily mean 791 

temperature in Jyväskylä, Finland, using data from the ETHZ-H0 simulation, in methods 792 

M1-M10 (black lines). The grey lines in the top five (bottom five) panels show 793 

observations for 1971-2000 (the ETHZ-H0 scenario simulation for 2069-2098). The 794 

numeric values in each panel give the mean, minimum and maximum, standard deviation 795 

and the skewness of the distribution within the projected time series. (right) Quantiles of 796 

the observed distribution in 1971-2000 (dashed, same in all panels), and of the projected 797 

distributions obtained using data from ETHZ-H0 (black solid line) and the other five 798 

RCMs (grey lines) 799 

800 
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801 

Fig. 7 Cross-validated MSE, CRPS and OutOfRange for temperature distributions in the 802 

years 2069-2098 (top) and 2001-2030 (bottom). The MSE that would have been reached 803 

if always predicting the correct 30-year monthly mean temperature is also shown (dark 804 

part of the bars in the left column). The bars give statistics based on two-month sampling 805 

of climate changes (M1-M5) and biases (M6-M10); the plus signs (+) and crosses (×) 806 

show the corresponding values for 1-month and 3-month sampling   807 
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 808 

Fig. 8 Ranking of the 10 methods (1 best, 10 worst) for cross-validated MSE of different 809 

percentiles of the temperature distribution in 2069-2098 (0% = absolute monthly minima, 810 

100% = absolute monthly maxima) 811 
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812 

Fig. 9 Cross-validation statistics for temperature in the years 2069-2098. The top row 813 

shows MSE, CRPS and OutOfRange separately for four individual methods (M4, M5, M9 814 

and M10) and for the combinations B2, B4, B8 and A10 defined in the text. The last two 815 

panels indicate the ranking (1 = best, 8 = worst) of the MSE and CRPS values within this 816 

sample of methods in different parts of the temperature distribution 817 
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818 

Fig. 10 Summary of temperature projections for the years 2069-2098.  The first three 819 

rows show the six-model mean changes in five quantiles of the temperature distribution 820 

(1% to 99%), as averaged over northern, central and southern Europe (48 stations north 821 

of 57.5°N, 44 stations at 47.5°N-57.5°N and 47 stations south of 47.5°N, respectively). 822 

The quantiles were first calculated for each month and then averaged over the three-823 

month seasons identified in the figure headers. The numeric values indicate the absolute 824 

difference from the observed value in 1971-2000 (unit: 0.1°C), and the shading gives the 825 

difference from the value for M1. The numeric values in the last row show the intermodel 826 

standard deviation of the projections (unit: 0.1°C), as calculated from the variance 827 

averaged over all 139 stations and the three months in each season. The shading 828 

indicates the ratio to the standard deviation for M1 829 

830 
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831 

Fig. 11 Intermethod rms differences of six-model mean temperature projections for the 832 

years 2069-2098, using data for all 12 months and the 139 stations.  In each cell, the 833 

thick solid line shows the rms difference between the two methods compared (scale from 834 

0 to 2°C) for quantiles ranging from 0 to 100% (left to right), while the dashed line gives 835 

the  rms difference averaged over all method pairs. The cells are coloured according to 836 

the rms difference calculated for the whole distribution (violet: lowest 20% of cases … 837 

red: highest 20% of cases), which is plotted in each cell in units of 0.01°C 838 
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839 

Fig. 12 Projections for (a) the 1st and (b) the 50th percentile of daily mean temperature 840 

in January in Jyväskylä, Finland in 2069-2098, based on the different methods and RCM 841 

simulations. The dashed lines show the observed values in 1971-2000, and the dotted line 842 

the six-model means averaged over the methods 4, 5, 9 and 10 The total variance in (°C)
2
 843 

and the relative contributions of model differences, model-method interaction and method 844 

differences are also shown, both when including all 10 methods (first numbers) and when 845 

only including methods 4, 5, 9 and 10 (numbers in parentheses) 846 

 847 

Fig. 13 The relative contributions of model differences, model-method interaction and 848 

method differences to the variance of the projected temperatures in 2069-2098 as a 849 

function of the percentile of the distribution. The variances are averaged over the 12 850 

months and the 139 stations. In (a), all 10 methods are included in the analysis, in (b) 851 

only methods 4, 5, 9 and 10 852 

 853 


