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U.S. federal agencies are now required 
to review the potential impacts of climate 
change on their assets and missions. Simi-
lar arrangements are also in place in the 
United Kingdom under reporting powers 
for key infrastructure providers (http://​www​
.defra​.gov​.uk/​environment/​climate/​sectors/​
reporting​-authorities/​reporting​-authorities​
-reports/). These requirements reflect grow-
ing concern about climate resilience and the 
management of long-lived assets. 

At one level, analyzing climate risks is a 
matter of due diligence, given mounting sci-
entific evidence. However, there is no con-
sensus about the means for doing so nor 
about whether climate models are even fit 
for the purpose; in addition, several impor-
tant issues are often overlooked when incor-
porating climate information into adaptation 
decisions. An alternative to the scenario-
led strategy, such as an approach based 
on a vulnerability analysis (“stress test”), 
may identify practical options for resource 
managers.

General Circulation Model–Based Predic-
tions and Their Limitations

Many climate change predictions are 
based on ocean-atmosphere general circu-
lation models (GCMs). For instance, Mote 
et al. [2011] describe means of extracting cli-
mate change projections from these models 
and outline a number of concerns, includ-
ing meeting the needs of end users. As with 
previous discussions of climate projections, 
the emphasis is more on the supply than on 
the demand for information. However, stake-
holders often ask, “What climate informa-
tion do we really need, and how should it be 
prepared?”

The scientific community has much to 
say about the latter, but some researchers 
are beginning to recognize that more effort 
should be spent identifying what informa-
tion is needed, given the particulars of the 
impact system in question. This would then 
inform how best to prepare climate risk 

information. For example, from a planning 
perspective, it is helpful to know what cli-
mate risks might reduce benefits or raise 
costs of a project such as new water infra-
structure. For decision making, what are the 
climate risks that would affect the choice 
between alternative options? For risk assess-
ment, what individual, sequential, or con-
current climate extremes pose the great-
est threat? GCM-based climate projections 
are not needed to answer these types of 
questions.

The recognized limitations of GCMs, 
including the lack of credibility on extremes, 
imply that GCM-based projections may have 
difficulty providing the information deci-
sion makers typically look for or even add-
ing value to a risk analysis [Kundzewicz and 
Stakhiv, 2010; Mote et al., 2011; Pielke and 
Wilby, 2012]. One problem is the tendency 
for some stakeholders to perceive and treat 
projections as forecasts. Indeed, it is difficult 

to communicate exactly what climate pro-
jections mean from a decision standpoint—
they simulate what might happen under 
some conditions but do not preclude other 
outcomes. In fact, climate analysts are often 
reluctant to say that one future is more or 
less likely than others.

In other disciplines such as decision anal-
ysis, scenarios are constructed to help deci-
sion makers explore the range of uncertainty 
in the key variables that affect their system 
or decision. However, climate change pro-
jections from GCMs are ill formed for doing 
so because of incomplete process represen-
tation, parameterization, and small effec-
tive sample sizes of models. As a result, the 
possible range of climate changes might not 
be fully explored if an analysis relies exclu-
sively on climate projections. Instead, cli-
mate model projections scope a “minimum 
range of irreducible uncertainty” [Stainforth 
et al., 2007]. In other words, the range of 
projections represents some of the uncer-
tainty in the possible range of future cli-
mate but not the full range of possible cli-
mate changes. Changes beyond what cur-
rent models project are possible. The model 
range represents a partial sampling, not an 
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Fig. 1. Variability statistics of bias-corrected, statistically downscaled historical general circula-
tion model (GCM) 30-year simulations (triangles) and resampled historical 30-year streamflow 
(circles). The actual historical value is indicated by the red dot. The climate model simulations 
show underestimation of the variability statistics relative to the observed values and resampled 
historical data. Historical data is from Maurer et al. [2002]. Climate projection is from Maurer 
et al. [2007], available at the Bias Corrected and Downscaled WCRP CMIP3 Climate Projections 
archive at http://​gdo-dcp​.ucllnl​.org/​downscaled​_cmip3​_projections. 
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exhaustive exploration of climate change. 
So if a decision maker wants to conduct a 
formal scenario analysis, restricting the anal-
ysis to this minimum range of uncertainty 
could result in a lack of consideration of 
possible climate outcomes.

Multimodel experiments such as the Cou-
pled Model Intercomparison Project phase 3 
(CMIP3), ENSEMBLES, Climateprediction​
.net, and others have helped to characterize 
aspects of climate uncertainty but not neces-
sarily for those variables of greatest relevance 
to natural resource managers, such as vari-
ability statistics. Other climate modelers assert 
that the spread of uncertainty may be reduced 
by adjusting known model biases in simulat-
ing present climate [Boberg and Christensen, 
2012]. Some researchers are beginning to think 
that it is better to generate climate scenarios 
in such a way that one can control, by design, 
the range of climate changes in the specific 
variables of interest [e.g., Prudhomme et al., 
2010; Brown et al., 2011].

As an example of the drawbacks of GCM-
based analyses, Figure 1 shows statistics of 
variability (standard deviation and autocor-
relation) of annual streamflow for a region 
of the northeast United States based on a 
widely used, bias-corrected and statisti-
cally downscaled source of GCM projections 
[Maurer et al., 2007]. These two variables are 
critical to the reliability of water supply sys-
tems, especially those with overyear stor-
age. The downscaled GCMs underestimate 
both the standard deviation and autocorre-
lation when compared with observations. It 
is reasonable to assume that projections of 
future climate from these GCMs would be 
biased in the same way despite an expecta-
tion for climate variability to increase [see, 
e.g., Kundzewicz et al., 2007]. If GCM pro-
jections alone were used to assess risks to 
such a water supply system, the range of out-
comes would no doubt be wide but none-
theless underestimated in this case, though 
the use of techniques that blend historical 
variability with projections may better evalu-
ate variability [Salas et al., 2012]. In addition, 
in risk assessments the choice of downscal-
ing technique(s) would be tailored to meet 
assessment requirements and would be a fur-
ther source of uncertainty [Wilby et al., 2009].

Alternatives to GCM-Based Analyses

Given these concerns, climate risk analy-
sis in a decision-making context should con-
sider analyses other than climate projections. 
However, continued development of Earth 
system models is a valuable endeavor that 
leads to improved process understanding of 
regional climate variability and change. In 
some cases, a vulnerability analysis, or stress 
test, may provide greater insight. Like a sen-
sitivity analysis, a vulnerability analysis pro-
vides information on how much a system of 
interest would respond (how sensitive it is) to 
changes in climate. Once risks are identified, 
model projections can be used to assess the 
plausibility, likelihood, or ranking of climate 

threats and opportunities based on the latest 
scientific evidence.

Climate scenarios can be generated para-
metrically or stochastically to explore uncer-
tainty in climate variables that affect the 
system of interest [Prudhomme at al., 2010; 
Brown et al., 2011]. This allows sampling 
changes in climate that include but are not 
constrained by the range of GCM projec-
tions. The definition of scenarios can be 
developed as part of a stakeholder-driven, 
negotiated process, and climate projections 
can be used in this process [Hallegatte et al., 
2012]. Alternatively, a very wide range of cli-
mate alterations can be developed indepen-
dent of their plausibility and used to iden-
tify risks. For scenarios in which the climate 
consequences exceed coping thresholds, it 
is then fruitful to evaluate the plausibility of 
the scenarios. Climate projections, paleo-
climate reconstructions, and subjective 
climate knowledge could all inform such 
discussions.

Hydrologists and engineers are develop-
ing methods based on sensitivity analysis 
that shift attention back on the water sys-
tem of interest and use GCM projections to 
inform, rather than drive, the analysis. These 
include “scenario neutral” approaches and 
“decision scaling,” which uses decision 
analysis as a framework for incorporating 
climate information including GCM projec-
tions [Prudhomme et al., 2010; Brown et al., 
2012]. These approaches might be termed 
“bottom-up meets top-down,” as they focus 
first on the issues of concern and then on 
how climate information might add value to 
the analysis. The basic steps in these meth-
ods are to (1) identify the problem, includ-
ing defining objectives and performance 
measures; (2) use a stress test to identify the 
hazard and evaluate the performance of the 

system under a wide range of nonclimatic 
and climate variability and change; and 
(3) evaluate the risk using climate informa-
tion including model projections.

The example in Figure 2 shows what com-
binations of change in mean and variability 
lead to an unacceptable decrease in water 
supply reliability (where reliability is mea-
sured as the frequency with which supplies 
are sufficient to meet water demanded) 
based on the water supply system serv-
ing a metropolitan area in Massachusetts. 
For instance, a 10% reduction in the annual 
mean and more than 10% increase in vari-
ability reduce reliability of supplies to 90%. 
Under historic climate these conditions 
occur less than 1% of the time. GCM projec-
tions can be mapped onto the same surface. 
Their clustering can be interpreted as the 
likelihood that these conditions will occur 
on the basis of the latest understanding and 
representation of the Earth system. Under 
climate change scenarios a system reliability 
of 90% is achieved in 85% of cases.

An additional advantage of sensitiv-
ity approaches is that they may preclude 
the need for an expensive climate impact 
assessment and associated opportunity 
costs (i.e., time and money). For example, 
if a stress test is performed and no risks to 
operations emerge over a wide range of 
plausible climates, then a decision maker 
will have assessed climate risk, found little 
or none, and satisfied the review require-
ments without the large effort involved in 
typical GCM-led end-to-end uncertainty 
analysis. For instance, for many water sys-
tems, climate pressures may not be signifi-
cant relative to other considerations, espe-
cially when economic discount rates in cost 
benefit analysis diminish the importance of 
the distant future [Stakhiv, 2011].

Fig. 2. A climate response function for water supply reliability (contours) as a function of changes 
in annual mean and annual standard deviation of net basin supply (NBS, inflows net evapora-
tion) based on the water supply system serving a metropolitan area in Massachusetts. Circles 
represent GCM simulations of the historical period, and boxes indicate the historical range of 
variability generated by resampling observed data.
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Furthermore, sensitivity approaches 
have the benefit that the analysis can be 
instantly updated as new information 
becomes available [Prudhomme et al., 
2010], such as when CMIP5 projections are 
released. The climate response surface is 
unlikely to have changed (unless the physi-
cal asset or management regime has also 
changed), so new projections, whatever the 
source, can be used to quickly update the 
“cloud” of estimated impacts.

Sensitivity testing can be performed for 
multiple variables, but visualizing more 
than two or three axes at a time can be 
challenging. In those cases, stakehold-
ers can be consulted about the choice of 
appropriate metrics and stress axes when 
presenting study results. While the meth-
ods described in this feature cannot reduce 
the uncertainty associated with climate 
change, they do attempt to clarify the 
effect of the uncertainty on the decisions in 
question.

None of the benefits of this approach can 
be accomplished without continued sci-
entific effort and development of climate 
models. Indeed, climate projections can be 
vital input for designing the stress test and 
for developing a physical basis for relative 
ranking of climate risks that are identified. 
However, decision makers could be helped 
by a shift of emphasis from the uncertainty-
laden scenario-first perspective to a deci-
sion-led view, in which the first step is to 
quantify the sensitivity domain of the man-
aged system under a wide range of climatic 
and nonclimatic pressures.
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