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ABSTRACT

An ensemble of global climate models is evaluated for its skill in reproducing the past surface

temperature trends seen in the observational data record. The evaluation is first carried out on a global

scale and is then repeated for smaller spatial scales in order to shed light on the minimum spatial skillful

scale. The world-wide set of downscaled results enable new ways of evaluating climate model, and the

question of whether the ensemble is able to provide a skillful probabilistic description of the temperature

trend is addressed. The results suggest that the global climate models provide skillful reproductions

of the global mean warming over the past 50 years, but they tend to under-estimate the warming

when the regions are approaching the size of ∼ 20× 10 grid-boxes. The reduced ability to reproduce

observed warming trends may also influence downscaled results, and an evaluation of empirical-statistical

downscaled 2-m temperature world-wide suggests that the modelled values are roughly within the range

of observed values. However, the statistical distributions are not identical, and the models appear to lose

the ability to discern geographical differences in the trends as the spatial scales are reduced: They don’t

predict the cooling seen over the last decades at some locations. Furthermore, downscaled results tend

to under-estimate the magnitude of the most pronounced trends.

Key words: Empirical-Statistical downscaling temperature trend evaluation multi-model

ensembles minimum skillful scale
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Introduction

The question of evaluating and estimating the skill associated with regional climate

model results is a major topic in the COST ES1102 “VALUE” project∗. Hulme and

Dessai (2008) regarded the process of constructing scenarios as potentially beneficial ir-

respective of the value of end product, and pointed out that this framing yields different

expectations about how one might evaluate the success of scenario exercises. They pre-

sented three approaches to evaluating the success or otherwise, which in practice can be

considered at three different levels: predictive success, decision success and learning suc-

cess. Nevertheless, the question about predictive success is an important aspect, and it is

important to evaluate the skill of the multi-model ensembles downscaling exercises as one

over-arching tool for predicting changes, rather than focusing on single models. Recent

papers, such as Weigel et al. (2008) have pointed out some principal differences between

single models and ensembles. It is argued that that multi-model combination may result

in “overconfidence” (i.e. ensemble spread is widened while average ensemble-mean error

is reduced) and the inclusion of even poor models may give an impression of increased

skill.

Climate models used to guide climate change adaptation must demonstrate skill

at the relevant spatial and temporal scales. A number of recent papers have presented

critical arguments in terms of downscaling climate models in order to provide a detailed

description of local climate necessary for climate change adaptation (Oreskes et al., 2010;

Pielke Sr. and Wilby, 2012). Palmer (2011) also argued that there still is insufficient

computing power to solve the equations of climate science with sufficient accuracy, which

requires a grid-point spacing of about a few tens of kilometres or less. However, the

arguments presented in these papers were based on general principles and judgements,

∗ http://www.value-cost.eu/
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and not specific evaluations of the models and the downscaling climate model results.

In order to make any statement about the models’ ability to predict real-world

features it is important to consider the exact definition of ’skill’, and clarify what is

implied in a poor and skillful model. There is a body of literature on skill estimation

for forecasts of model ensembles, such as the Brier skill score (BSS), Relative operating

characteristic (ROC), and reliability diagrams (Wilks, 1995; Jolliffe and Stephenson,

2003).

An evaluation of model results should reflect the quantity that is of interest in terms

of prediction. When using climate models to make climate change scenarios for climate

change adaptation, it is the ability to predict the local warming that is one of the most

relevant issues, and the evaluation should include the whole the process of downscaling

a multi-model ensemble and trend analysis. Such an evaluation needs to address the

question whether the analysis of the an ensemble of downscaled global climate models is

able to reproduce the historical trends seen in the observations (Benestad et al., 2007).

Furthermore, if climate models are used to answer questions about future heatwaves and

cold snaps, the relevant question is whether the models have been able to describe a

typical cold or warm season in the past. Before such questions can be addressed, it is

important to examine whether observed low and high quantiles are reproduced by the

climate models at the end of entire analytical process. It is important to keep in mind that

the success of such an assessment is merely a minimum and not a sufficient requirement

for assuring reliable predictions for a future world.

A number of studies has been carried out on multi-model skills. Solomon et al.

(2007) and van der Linden and Mitchell (2009) provided general overviews of multi-

model ensemble research. Santer et al. (2009) presented a multi-model detection and

attribution study based on 22 different climate models, from which they identified sim-
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ulated fingerprint patterns of anthropogenically caused changes in water vapour. They

examined whether results were sensitive to model quality, and found the anthropogenic

water vapour fingerprint to be insensitive to model uncertainties.

Collins (2007) explored a number of new approaches for dealing with a number of

sources of uncertainty that arise in the prediction process. He discussed problems con-

cerning the use of model ensembles in constructing probability density functions (PDFs).

Frame et al. (2007) too discussed the use of ensemble-based ’probabilistic’ climate fore-

casts, and pointed out a number of challenges related to experimental design and inter-

pretation of forecast results. Knutti (2010) observed that the problem of weighting and

evaluating models proves to be non-trivial, and suggested to downweight or eliminate a

few very poor models that are clearly unable to mimic important processes, or are even

physically implausible.

Murphy et al. (2007) presented a strategy for probabilistic predictions of future cli-

mate, based on a set of ensemble simulations of equilibrium and time-dependent changes.

They designed a model ensemble by perturbing poorly constrained parameters controlling

key physical and biogeochemical processes in a global climate model to allow quantifi-

cation of the effects of uncertainties and internal climate variability on feedbacks. They

also presented an ensemble of regional climate simulations at 25 km resolution over Eu-

rope, and proposed using a Bayesian statistical framework for generating probabilities

constrained by observational metrics.

Maraun et al. (2010) reviewed validation methods and presented techniques for as-

sessing downscaling skill. They paid special attention to the end-user needs in terms

of skillful predictions, and discussed the models’ ability to reproduce intensity-duration

relations, spatial coherence, event size, statistical distribution of daily precipitation, and

seasonal dependence of the downscaling skill. However, they did not mention the mini-
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mum skillful scales of the models, and they didn’t really go into details about evaluating

multi-model ensembles. Most studies on downscaling also involve selected limited regions

or are restricted to a specific country, whereas a global representation is required to

provide a representative picture of the global climate models (GCMs) ability to provide

information useful for climate change adaptation, as regions may be susceptible to the

GCMs’ regional biases.

The criticism brought forward by Oreskes et al. (2010), Pielke Sr. and Wilby (2012),

and Palmer (2011) is to some extent also related to the concept of minimum skillful

scale which has been acknowledged in a number of studies (Benestad et al., 2008; Huth

and Kyselý, 2000; Zorita and von Storch, 1997; Grotch and MacCracken, 1991). Few

of the evaluations of multi-model ensembles have addresed the question of minimum

skillful scale, however. Grotch and MacCracken (1991) concluded that the quality of

the model simulations of present climate sets one limitation in terms of projecting a

future climate change. Based on Grotch and MacCracken (1991), Zorita and von Storch

(1997) argued that the minimum scale and minimum skillful scales are not the same. The

former should be defined as the distance between two neighbouring grid points, whereas

the skillful scale is larger than n grid-point distances. Zorita and von Storch (1997)

suggested that n≥ 8, which for a GCM with 2◦ × 2◦ is about 16◦ (which corresponds to

approximately 1780km at the equator, 1100km at 50◦N/S, and 600km at 70◦N/S). The

presence of a skillful scale has also been acknowledged by Huth and Kyselý (2000), who

also referred to the work by Grotch and MacCracken (1991). It is important to note that

the minimum skillful scale may depend on the type of climate variable and time scale.

It is also plausible that the concept of minimum skillful scales apply to the temporal

dimension due to approximations made in solving complex equations, round-off errors,

imperfect numerical algorithms, or the discrete representation of smooth functions.
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Here the evaluation of climate models involves both global scales as well as their

ability to describe regional and local conditions, down to the minimum spatial skillful

scales. The paper is divided into two parts where the first involves an analysis of mini-

mum skillful scales for a multi-model ensemble whereas the latter presents an evaluation

of downscaled results on the scale useful for impact researchers and climate change adap-

tation. However, the data and methods are presented before discussing the results, and

a discussion and the conclusion are provided after the results.

Data & Method

Here the evaluation of minimum skillful scale was carried out for the surface air temper-

ature (2m), and involved 49 different simulations from the CMIP3 (Meehl et al., 2007)

data set (Table 1). The CMIP3 ensemble was chosen here rather than the more recent

CMIP5 archive for several reasons: (a) they correspond to the downscaled results pre-

sented in Benestad (2011) that are evaluated in the second part of this paper; (b) it is

useful to evaluate the CMIP3 in order to provide a reference against which the CMIP5

results subsequently can be evalued; (c) and the new CMIP5 archive is more cumbersome

and impractical to get at whereas the CMIP3 data were conveniently at hand (limited

resources slows down progress).

The NCEP/NCAR reanalysis (Kalnay et al., 1996) was used for evaluating the global

and regional mean trends of the CMIP3 ensemble as it was up-to-date and came with

complete spatial coverage. Missing data gaps make the analysis complicated, since the

same time-varying missing-data mask should be applied to all models. Care should be

exercised when using reanalysis for trend analysis∗ (Hines et al., 2000; Bengtsson et al.,

∗ http://climatedataguide.ucar.edu/
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2004a), so two other gridded observations were included in the global mean comparison.

Here the additional gridded observations were the GISTEMP (J.E. Hansen, 2009) and

HadCRUT4 (Jones et al., 2012; Morice et al., 2012). The latter involved an ensemble

of gridded results, and here the median was taken as best estimate and the 95% of the

uncertainty estimates was taken from ensemble quantiles.

The trend evaluation for the downscaled results relied on the local temperature series

taken from the Dutch Meteorological Institute’s (KNMI) ClimateExplorer∗, but regional

mean trends were entirely based on the NCEP/NCAR reanalysis. In some regions, the

gridded observations too will suffer from sparse network of data, and the 2-metre air

temperature in the reanalyses is a variable that is constrained by observations through

assimilations. Hence, both the reanalysis and the temperatures are less certain in areas

with a low network density of thermometers.

Simulations from the 20th century were combined with corresponding run for the

21st, assuming the SRES A1b emission scenario. Annual mean values were extracted from

the 1962–2011 interval based on the combined simulation results for the two centuries, and

for the comparison with observations, anomalies were computed with respect to 1961–

1991 baseline period. The total global mean temperature differed by 1.93 K between

the different GCMs, suggesting an error range of 0.7 % in terms of the absolute values

(the temperatures are calculated in degrees Kelvin). This error range is affected by e.g.

the models’ spatial resolution, the land-surface characteristic, parameterisation schemes,

and cloudiness. The GCMs are usually “tuned” by varying some parameters used in a

simplified description of unsolved processes (parameterisation schemes, e.g. describing

clouds, etc) so that the model description gives a best match to the real world. Often,

the criterion for tuning is the mean state and the annual cycle, and the tuning may

∗ http://climexp.knmi.nl/
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have some effect on the climate sensitivity (Bender, 2008), however, the tuning does not

involve fitting the transient integrations to the past temperature evolution.

Here ’trends’ refer to the linear rate of change derived trough an ordinary least-

squares regression using time as the only co-variate. Trends for the downscaled results

were estimated for each of the four seasons (December–February; March–May; June–

August; September–November). The length of the observed thermometer records varied

from place to place, and the trend was therefore estimated for different time intervals for

the different sites. However, in comparing the downscaled model results with observations,

the trend was estimated over a corresponding interval for the downscaled results. Only

station with more than 30 years of data were included in this evaluation exercise.

The simulated trends derived for the global and regional means, as well as for the

downscaled results, were assumed to be approximately normally distributed with respect

to ensemble member. Normal quantile-quantile plots were used to test this assumption for

the global mean trends (Figure 1) and downscaled results (not shown). Figure 2 illustrates

how best-fit normal distribution of the envelope of simulated global warming rates from

CMIP3 (grey) compares with the corresponding trend estimated from the NCEP/NCAR

reanalysis (black line). In this plot the text ’p= 28%’ refers to the quantile (qP ) of

the CMIP3 distribution that corresponds to the trend in the NCEP/NCAR reanalysis.

Similarly, a quantile-quantile plot for the Svalbard temperatures (trends) indicated that

the values of all the ensemble members were close to being normally distributed (not

shown). Again, the observed trend was ranked against a best-fit Gaussian distributiuon

to the downscaled CMIP ensemble. A high portion probability (rank) p around 50%

suggests an under-confident ensemble whereas high frequencies of values near zero and

100% suggests over-confident ensembles (Weigel et al., 2008).

Two types of evaluation were carried out to answer the questions: (a) if the GCMs
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reproduce the observed temperature trend statistics without emphasis on the precise

location and (b) if the models were able to resolve the local temperature trend at a

particular location.

The null-hypothesis of the first is that the CMIP3 results are statistically indis-

tinguishable to the observations. In this case, skillful simulations are interpreted as the

statistical distribution of the simulations being similar to that of the observations. This

provides a test for whether the GCMs provide a reasonable description of the near surface

trends on earth in general, but does not assess the question of whether the geographical

distribution of trends is the same as in the observations. The test here is therefore to

compare the range of values and to look for a universal distribution in the corresponding

quantiles qP .

The skill relevant for estimating the minimum skillful scale will be the extent to which

the statistical characteristics of trend estimates projected for the past by the multi-model

ensemble is distinguishable from corresponding observed trend. In other words, it is a

question of whether the observed trend for a given location has the same characteristic as

the corresponding ensemble predictions. Similar analysis was applied to the downscaled

results in section 2. Hence, for the second question, one can apply standard evaluation

techniques used in weather forecasting, such as the Receiver Operating Characteristic

(ROC) and reliability plots (Wilks, 1995; Jolliffe and Stephenson, 2003).

The evaluation of global and regional mean trends only involved a few data points

for area means, whereas robust estimation of ROC scores, reliability diagrams and BSS

require larger data samples. However, these evaluation techniques were applied to the

empirical-statistical downscaled (ESD) results with large number of individual sites (N ∼

O(1000)). The ROC and reliability diagrams were derived using functions from the R-
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package verification
∗. The R-package was difficult to install because it dependended

on other R-packages with deficiencies in the package structure. However, the specific

R-functions needed for the ROC and reliability diagrams were extracted thanks to R’s

open-source philosophy, and were sucessfully complied on their own.

Simple schemes were used for evaluating the area mean trends. For the evaluation

of the minimum skillful scales, the globe was divided into successively smaller regions by

first dividing the world into 2× 2 equal areas in terms of longitude × latitude sectors

(2× 2 gives 4 regions: 180◦W–0◦E/90◦S–0◦N, 180◦W–0◦E/0◦N–90◦N, 0◦E–180◦E/90◦S–

0◦N, and 0◦E–180◦E/0◦N–90◦N). This process was iterated by subsequently dividing the

globe into 4× 4, 8× 8, and 16× 16 parts with the same longitude and latitude ranges

(see sectors in Figure 3). Due to the earth’s curvature, the regions near the poles represent

smaller area than those with the same range of longitude in the tropics, however, this

inhomogeneity is only present for the 8× 8, and 16× 16 regions.

The evaluation of area mean trends involved comparing the proportion of times the

observations were outside a 90 percent interval (henceforth denoted ζ90). About 10 per-

cent of all the observed values is expected to fall outside this ζ90 range if the downscaled

model results have the same statistical characteristics (location and variance) as the

observations. The binomial distribution (Pr(K = k) = n!
k!(n−k)!p

k(1 − p)n−k) provides a

basis for judging whether the counts of trends outside the ζ90 range is anomalous, and to

estimate the p-value. The binomial distribution was also used to evaluate the skill of the

downscaled multi-model results in terms of describing extremely hot and cold seasons.

About 5% of the downscaled results should on average fall below or above ζ90.

The empirical-statistical downscaled results were the same as used in Benestad

(2011), involving a common EOF frame-work based on large-scale 2-metre tempera-

∗ http://cran.r-project.org/web/packages/verification/index.html
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ture. The calibration of the ESD models involved a stepwise multiple regression between

common EOFs constructed from a combination of the ERA40 reanalysis (Simmons and

Gibson, 2000) and individual GCM results. The data were de-trended and the climatology

was subtracted prior to the calibration, and the common EOF frame-work ensured that

the subsequent predictions used exactly the same spatial patterns as those used in the

model calibration. Benestad (2011) evaluated the results by looking at R2 from the re-

gression between predictors and predictands in addition to a regression analysis between

a set of best-fit coefficients of site-specific polynomial trend models to geographical pa-

rameters such as altitude. Another quality check was to compare the different trends for

different calendar months, as it was expected that the trend would vary fairly smoothly

with the seasons rather than abruptly and irregularly with spikes in some months. ESD

results from GCMs with variance that differed by a half standard deviation from the ob-

servations were discarded from the downscaled ensemble. Using common EOFs in ESD

involves some kind of quality control, but also ESD diagnostics such as inspection of

spatial maps of regression weights and residuals give some indication about the quality

of the results. Such diagnostics, however, only provide information about single GCMs.

The objective of this study is to explore ways to evaluate the skill of the exercise of

downscaling the entire multi-model ensemble.

Results

Skillful scale

The CMIP3 GCMs provide a reproduction of the global mean surface air temperature

according to both the NCEP/NCAR reanalysis, GISTEMP, and HadCRUT4 (Figure 4).

The model envelope matches well the observations as there was only two years (1967,

Page 12 of 43

http://mc.manuscriptcentral.com/joc

International Journal of Climatology − For peer review only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Peer Review O
nly

Evaluation of climate simulations 13

1996) when the annual mean was outside the 95.45% confidence interval about the en-

semble mean (±2 standard deviations). According to a binomial distribution, the p-value

associated with two such outliers is 60% and is well within the null-distribution (i.e. same

distributions). The linear trend estimate for the global mean from the NCEP/NCAR re-

analysis is furthermore well within the distribution of the CMIP3 ensemble (Figure 2),

and the models therefore provide a skillful representation of the global warming.

The arguments presented by Oreskes et al. (2010) and Pielke Sr. and Wilby (2012),

on the other hand, concern the question whether the GCMs are able to provide a skillful

description of the temperature on smaller spatial scales. Figure 5 shows comparisons of

the trend of the mean from a range of sub-domains, and there is a reasonable agreement

between the models and the NCEP/NCAR reanalysis down to regions with approxi-

mately 20× 10 grid-boxes, however the GCMs do not reproduce the strong warming

associated with smaller spatial scales (panel a). A comparison between the area, inde-

pendent of number of grid-boxes, suggests that model simulations of area mean temper-

ature trends and observations are consistent on spatial scales of 10, 000km2 and larger

(panel b). The model results are inconsistent with the observations for spatial scales of

1, 000km2 and smaller, however.

One interesting question is whether the minimum skillful scale depends on the num-

ber of grid-boxes or the area. A strong dependence on the number of grid-boxes may hint

that the minimum skillful scale is related to the way the computer solves the equations

through numerical schemes and discretisation. A strong area-dependence (both in terms

of location and area size), on the other hand, may suggest that the computer solutions do

not capture physical phenomena (e.g. the Arctic amplification). These aspects, however,

may be entangled.

The various GCMs in the CMIP3 ensemble have different spatial resolution, im-

Page 13 of 43

http://mc.manuscriptcentral.com/joc

International Journal of Climatology − For peer review only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Peer Review O
nly

14 Benestad

plying that some of the regions in different models may cover similar areas but involve

different number of grid-boxes. The results for the regional trends were displayed as

coloured regions as in Figure 3, and it is evident that model-observations for the same

area size could vary substantially from location to location. Some regions, notably over

Europe, seemed to be more problematic more than others. One possibility may be that

this exception is just a result of statistical fluctuations, although it is consistent with

observations made by Oldenborgh et al. (2009): Europe warms faster than the models.

Skill of downscaled multi-model ensemble

Figure 6 presents a map of N sites where the 2-m temperature was downscaled. The

colour shading indicates the length of the time series used for calibrating and evaluating

the trends. Here the predicted trends were entirely based on the GCMs simulations of

the 20th century, and didn’t involve any information about trends from the ERA40

reanalysis, which was used only to train the model (on de-trended data).

Figure 7 shows the geographical distribution of the trend estimates, suggesting some

degree of spatial coherence. The strongest warming is seen over Europe, and the picture

is consistent with the observation with more pronounced warming over Europe than pre-

dicted by the GCMs (Oldenborgh et al., 2009). Part of the evaluation of the downscaled

results involved assessing whether model results and the observations belonged to the

same statistical distribution. Figure 8 displays the distribution of trends for the four

different seasons. It is clear from this comparison that the downscaled trends to some

extend captures part of the observed range, but is not the same: the ESD results are

biased and under-estimate the frequency of negative slopes.

To get more details about the discrepancies, the qp corresponding to the observed

trend was plotted in colour shadings at the various sites and for the four different seasons
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(Figure 9). There was no clear geographical coherence in the ranking of the observed trend

estimates among the corresponding ESD results, as there was for the observed warming

trend (Figure 7). One exception may be over central Europe, however. A lack of spatial

coherency may suggest that the model-observation differences is due to local data issues

rather than the GCMs since the temperature from the GCMs is expected to be a smooth

field in space. Histograms of the ranking statistics of the trend slope compared to the

ESD results suggest that the ESD produces too conservative estimates (Figure 10): Often

the observed trends slopes are steeper, be it in negative of positive sense. In other words,

the downscaled CMIP3 ensemble is over-confident in terms of temperature trends. These

results may partially be explained by the presence of pronounced secular internal chaotic

variations, and an inspection of individual ESD, as presented in Benestad (2011), suggests

that the CMIP3 ensemble do not always capture these internal secular variations very

well (not shown).

The degree of under-confidence may potentially be explained in terms of the variane

captured (R2) by the regression analysis involved in the downscaling. Figure 11 shows

a discernable relationship between the R2-statistics and the ranking of trend according

to the ESD estimates. This suggests that the mismatch is partly, but not wholly, due to

reduced variance/poor fit between large and small scales.

It is also possible that short series are associated with greater scatter due to sampling

fluctuations, in accordance with the expected greater trend estimates for shorter time

series. Internal chaotic variations are expected to have increased influence of the trend

estimates with shorter data records. A comparison between the length of the time series

used for calibrating the ESD models and the trend estimates, reveals no systematic bias

(Figure 12). The increased spread for shorter data records supports the notion that

internal variations are present and do affect the estimation of the trend estimates by
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introducing extra noise and increasing the uncertainty. A comparison between Figures 6

and 8 suggests that the not all model-observation discrepancies are due to short series,

as there are sites with divergent results even for the longest data records.

Both long and short series are associated with high and low R2-statistics (upper

panels in Figure 13). There might be a small hint of weaker regression results for the

shorter series, however. The lower left panel in Figure 13 compares the quantile qp of the

ensemble distribution corresponding to observed values, by comparing the probability

level p with the length of the record. The results suggests that the downscaled CMIP3

ensemble has a tendency to under-estimate the trends regardless of the length of the

series.

Lower right panel in Figure 13 shows the proportion of the observed seasonal mean

temperatures that falls outside the modelled ζ90. For identically distributed data, one

would expect to find approximately 10% of the data outside this 90% confidence range.

Here, the results seem to cluster into a group with too few extreme values or too many.

These results suggests that the downscaled results as a whole may not provide reliable

information about the occurrence of heatwaves and cold seasons. For a small selection of

sites, however, the downscaled results do produce results with similar statistical charac-

teristics (Førland et al., 2011), but we do not know if this is for the right reason. Discrep-

ancies in trend characteristics in general may possibly be due to incorrect description of

soil moisture, vegetation, boundary layers, blocking frequencies, or cloudiness.

The evaluation so far has indicated that the GCMs and ESD produce results with

similar magnitudes as the observations, albeit with some biases in both the mean and the

amplitudes. So far, the analysis has not addressed whether the ESD can provide a good

description of how the results vary in space and with the geography. It is possible to use

merhods from meteorological forecasts, such as ROC and reliability curves, to evaluate
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the spatial distribution of trends.

Figure 14 shows ROC plots for the four different seasons and for the predictions

of local trends greater than 0.15◦C/decade. Curves above the diagonal signify skill∗,

however, the curve for September–November follows the diagonal closely. These results

suggests that the ESD results are associated with slight skill for most of the year, and

the information from the analysis above indicates that the under-estimation of negative

trends in the ESD results contribute to the low skill estimates.

The reliability diagram in Figure 15 indicates very low skill in predicting differ-

ent geographical conditions in warming rates exceeding 0.15◦C/decade. This evaluation

suggests that the predictions have both minimal resolution and reliability, and they un-

derestimate smaller probabilities while slightly overestimate the higher probabilities. The

insert shows the relative frequency of predicted probabilities, and the peak at the low end

may be attributed to sites with low R2-scores. The downscaling of the CMIP3 models

also tends to give a high proportion of cases with dT/dt > 0.15◦C/decade, contrasting

the the impression from Figure 8. However, the reliability diagrams assesses the pre-

dicted probabilities rather than the trend magnitude. The presence of internal variations

in observations that are not equally present in GCMs leads to an over-estimation of the

probabilities and still result in conservative estimates of the trend magnitudes.

Discussion

The results presented here may be interpreted as support for the scepticism against

extracting local information from global climate models (Oreskes et al., 2010; Pielke Sr.

and Wilby, 2012; Palmer, 2011), however, the picture is more nuanced than presented in

∗ http://www.metoffice.gov.uk/research/areas/seasonal-to-decadal/gpc-outlooks/user-guide/interpret-

roc
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those papers for the predictive success (Hulme and Dessai, 2008). Although the present

results only refer to one strategy for downscaling, the low skill in terms of predicting the

geographical differences in warming rates reflect the GCMs’ inability to describe regional

climate just as well as shortcomings of the downscaling strategy. The analysis of the

minimum skillful scale suggests that the former still is an important obstacle to getting

reliable projections of local temperature. In itself, the evaluation of the GCM’s ability to

reproduce trends and their minimum skillful scales may also provide a basis that favours

decision and learning success discussed by Hulme and Dessai (2008).

It is also important to keep in mind that the ESD results were statistically similar

to the observed trend estimates in several respects, albeit with an under-estimation of

negative trends. The statistical distributions of modelled and observed trends were dis-

tinct but the magnitudes were of similar order. The evaluation presented here revealed a

fuzzy description of the geographical dependence of local temperatures, which suggests

that the downscaled values may not capture the geographical distribution very well,

under-estimate the internal variability and the most rapid warming rates, but neverthe-

less produce results that are approximately in the right ball park. It is interesting to note

that a regression analysis against geographical indices∗ successfully identified high R2

scores (>28% for Europe) for the ensemble mean polynomial trends (Benestad, 2011).

While that analysis did not rely on observed trends (which may contain errors), they

identified patterns consistent with real geographical features.

For many locations the trend is hard to estimate, as inter-annual variations give rise

to a scatter in the trend-estimates. Furthermore, the trends in the past have been weak

and much less pronounced than those expected for the future. Hence skillful reproduc-

tion of these past trends may require higher precision than is required for drawing useful

∗ altitude (z), distance to the coast (d), north–south distance, east–west distance, ln(d),
√

(d) and
√

(z)
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information from projected future trends of more substantial magnitudes. This is espe-

cially true in the presence of inter-annual and decadal variations. The results presented

here suggest that CMIP3 under-estimate decadal variations. Furthermore, the internal

variations are expected to be out-of-phase and influence the trend-estimates in different

directions.

The ESD is designed to produce “semi-realistic” variance as it involves a regression

against the observations (the variance predicted by regression models will always be

the same or less than the original data), based on well-constained ERA40 temperature

products. The geographic distribution of trend estimates are expected to be dependent

on the year-to-year variance, unless the GCMs themselves predict regional trends that

are incompatible with the observations. For ESD in isolation, any difference between the

modelled variance can be due to model-observation differences, as the ESD used common

EOFs as a basis (Benestad, 2001).

The analysis of the ESD results does not indicate region and continental-scale spa-

tially coherent biases, but large variations within local sites as with the regional mean

analysis. These large inter-site variations may mask GCM biases of larger scales, however.

Important local factors such as landscape, land use, pollution, and urban heat island may

not be sufficiently well captured by the GCMs, which could explain some of the discrep-

ancies seen here. Furthermore, biases in the GCM results may not be time invariant, and

discrepancies may also be connected with slight structural deficiencies in the models, for

instance associated with the approximations, numerical or the parameterisation schemes.

It is possible that all GCMs have common systematic errors.

It is also possible that errors in observations give the impression of lower skill than

actually is the case. Here the temperature was taken from the KNMI ClimateExplorer,

which may not incorporate the most recently quality controlled data. For some sites,
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the temperature record disagreed with reanalysis data (Benestad, 2011), and may look

suspicious. For some African locations, the temperature exhibited conspicuously looking

negative trends, but there was not sufficient information to rule out the question whether

these were due to local environmental change or an introduction of irrigation. Further-

more, sparse distribution of measurements makes both homogeneity testing difficult and

the reanalyses uncertain.

The ERA40 reanalysis used here to calibrate the ESD models may also have defi-

ciencies in some regions (Benestad, 2011), possible due to shortcomings in the description

of the hydrological cycle (Bengtsson et al., 2004b). For the future, the analysis should be

repeated with ESD models calibrated on newer reanalyses such as the ERA-Interim (Sim-

mons et al., 2007). Furthermore, a repeat on ESD based on the new CMIP5-ensemble

will provide some information about added value associated with the next generation

GCMs.

A central question is whether relevant processes and phenomena are well-captured

by the GCMs, with a manifestation in realistic description of ENSO, NAO, storm track

position and blocking frequencies. The CMIP3 models provide a crude description of such

phenomena (Solomon et al., 2007). Some models provide a better description of such

phenomena than others, and in most cases, the phenomena reproduced in the models

come with biases in geographical extent, time scales, or magnitude. For example, the

results from some GCMs suggest too pronounced westerly air flow over Europe, with

implications for both temperature and precipitation.

The results so far may suggest that there are indications of shortcomings, however,

it is difficult to know how much of these can be attributed to model deficiencies and how

much to imperfect observational records. In this respect, one should stress that observa-

tions are extremely important for the use of model results in real life applications, both in
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terms of model evaluations as well as providing additional and independent information

about the real world. The scepticism towards using climate models for climate change

adaptation in Oreskes et al. (2010); Pielke Sr. and Wilby (2012); Palmer (2011) is to a

large extent neglecting the information from empirical data. For practical purposes, it

is important to glean to historical trends and pose the question whether a shift in the

trend is expected in terms of our physics-based knowledge.

The practical take-home message for end-users is that the downscaled temperatures

tend to have realistic magnitudes for the trends albeit with a somewhat under-estimated

range and missing accounts of cooling in some locations. It should be kept in mind that

ESD may give a good description of the variance, even if the trends do not correspond

to those observed in the past. The high precision needed to pin-point the exact trend

estimate at particular location seems to be lacking in the empirical-statistical downscaled

CMIP3 GCMs, possibly owing to the presence of secular internal variations, unaccounted

for factors, shortcomings of the ESD, or possible inability to capture relevant phenomena.

However, a lack of the high fidelity required to capture the weak trends of the past does

not preclude the GCMs’ ability to provide an approximate description of local tempera-

ture change in a world with a more pronounced global warming. The future development

should nevertheless focus on the skill of the representation local phenomena in the GCMs,

such as patterns in sea surface temperature, sea-ice, storm tracks, blocking frequencies,

ENSO, the Monsoon, the MJO, and the mid-latitude westerlies. The misrepresentation

of these may possibly be related to the models spatial resolution (Palmer, 2011).
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Conclusion

Here it has been demonstrated that the CMIP3 GCMs are skillful at large spatial scales,

and that there is a minimum skillful scale associated with the models’ inability to repre-

sent smaller-scale phenomena. Nevertheless, by applying empirical-statistical downscal-

ing to the multi-model GCM results for the 20th century simulations, one can obtain

local warming rates for the past that on the whole are roughly of the same magnitude

as observed. However, the downscaled results under-estimate the number of cases with

negative temperature trends as well as the internal variability. The evaluation indicates

that the downscaling is not able to provide reliable high-precision predictions of the geo-

graphical distribution of warming trends, but the usefulness of such scenarios will depend

on the degree of precision required.
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Figure 1. A normal quantile-quantile plot of the linear trend estimates (degrees/decade) for

ensemble of CMIP3 simulations shown in Figure 4 suggests that the ensemble members are

roughly normally distributed. The greatest deviation from the normal distribution is seen in the

models producing the least warming.
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Figure 2. A comparison between the CMIP3 ensemble simulation and the NCEP/NCAR re-

analysis estimate of the global mean linear warming trend. Each panel shows two sets of regions

indicated by different hatching.
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Figure 3. Map showing the regions and the quantile (shading) corresponding to the observed

trend. The quantile was estimated assuming that the ensemble is normally distributed∼N(x, σ).
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Figure 4. Comparison between the CMIP3 ensemble reproduction of the 1962–2011 annual mean

temperature anomalies (wrt 1961-1990) and observed temperatures. The ensemble of simulations

is shown as grey shading with darker shades for the central parts of the distributions. The thin

dashed lines mark the ensemble mean ±2 standard deviations. The observations shown include

the NCEP/NCAR reanalysis in addition to GISTEMP and HadCRUT4 (the dotted red lines

indicate the 90% confidence interval for the HadCRUT4 analysis).
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Figure 6. Overview of the station sites and the length of the data records (years). Light green

suggest stations with more than 100 years of data, mostly found over the USA.
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Figure 7. Overview of the station sites and the geographic distribution of trend estimates based

on observed temperature.
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Figure 8. Histograms of observed (grey) and modelled (black) trend estimates for the four

different seasons (different panels). In both cases, the trends indicate a positive bias (a global

warming) compared to the observations, and the models tend to under-estimate the number of

cases with negative trends (local cooling).
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Figure 9. The geographical distribution of the quantile of the trend estimates simulated by the

CMIP3 ensemble that corresponds to the magnitude of the observed trend. Red colour indicates

an over-estimation of the historic trend whereas blue suggests an under-estimation.
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Figure 10. Histograms of the the quantile of the modelled trend estimates corresponding to the

observed trend. The different panels show for different seasons, and all indicate that there is an

over-representation of cases which are above or below the 90% C.I.

Page 37 of 43

http://mc.manuscriptcentral.com/joc

International Journal of Climatology − For peer review only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Peer Review O
nly

38 Benestad

0 20 40 60 80 100

0

20

40

60

80

100

ESD quantile corresp. to obs

quantile

m
in

(R
2 )

0 20 40 60 80 100

40

60

80

100

ESD quantile corresp. to obs

quantile

m
ax

(R
2 )

0 10 20 30

0

20

40

60

80

100

ESD quantile corresp. to obs

percent outside 90% C.I.

m
in

(R
2 )

0 10 20 30

40

60

80

100

ESD quantile corresp. to obs

percent outside 90% C.I.

m
ax

(R
2 )

0

10

20

30

40

50

60

70

80

90

100

Figure 11. Correspondence between R2 and the quantile of the modelled trend estimates corre-

sponding to the observed trend. The colour shading indicate how the frequency of cases varies

with minimum (left) or maximum (right) R2 values and the quantile of the ensemble that cor-

responds to the observed trend (upper) and the proportion of the cases in which the observed

trend is outside the 90% confidence interval simulated by the CMIP3 ensemble (lower).
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Figure 12. Correspondence between time series length and trend estimate indicates greater

scatter for shorter series, but no systematic shift with respect to length. Furthermore, the high-

estimates are all associated with short time series.
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Figure 13. Correspondence between minimum (left) and maximum (right) R2 and time series

length (upper), and ranking of observed trends compared to the CMIP3 ensemble simulations

(lower left). Lower right panel shows how the cases where observed trends are outside the 90%

C.I. is distributed with respect the record length. Cut-off at 30 years, as stations with shorter

records were not included here.
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Figure 14. ROC plots for the ESD results over the 1963 locations and the four seasons are

shown in the four different panels. The curves show comparisons between the hit rate and

the false alarm rates for geographical distribution of past local warming exceeding a threshold

value 0.15◦C/decade. Best skill is seen for June–August, while the worst skills are seen during

September–November.
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Figure 15. Reliability plot for all seasons and all locations showing a comparison between ob-

served frequencies and corresponding forecasted probabilities of local warming trends exceeding

a threshold of 0.15◦C/decade. The insert shows the relative frequency of forecasted probabilities.
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TABLE 1. List of the CMIP3 GCMs used in the analysis of skillful scales. The runs refer to both the

’20c3m’ simulations and the ’sresa1b’, which were combined into on climate simulations for the time

interval 1962–2011.
bccr bcm2 0 - run1 cccma cgcm3 1 t63 - run1 cccma cgcm3 1 - run1
cnrm cm3 - run1 csiro mk3 0 - run1 gfdl cm2 0 - run1
gfdl cm2 1 - run1 giss aom - run1 giss aom - run2
giss model e h - run1 giss model e h - run2 giss model e h - run3
giss model e r - run1 giss model e r - run2 giss model e r - run3
giss model e r - run4 giss model e r - run5 iap fgoals1 0 g - run1
iap fgoals1 0 g - run2 iap fgoals1 0 g - run3 ingv echam4 - run1
inmcm3 0 - run1 ipsl cm4 - run1 miroc3 2 hires - run1
miroc3 2 medres - run1 miroc3 2 medres - run2 miroc3 2 medres - run3
miub echo g - run1 miub echo g - run2 miub echo g - run3
mpi echam5 - run1 mpi echam5 - run2 mpi echam5 - run3
mri cgcm2 3 2a - run1 mri cgcm2 3 2a - run2 mri cgcm2 3 2a - run3
mri cgcm2 3 2a - run4 mri cgcm2 3 2a - run5 ncar ccsm3 0 - run1
ncar ccsm3 0 - run3 ncar ccsm3 0 - run6 ncar ccsm3 0 - run9
ncar pcm1 - run2 ncar pcm1 - run3 ukmo hadcm3 - run1
ukmo hadgem1 - run1
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